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요 약  
본 논문은 깊이 카메라를 활용한 Visual SLAM 시스템에서 픽셀 에너지 변화량에 기반한 우선순위화와 효율적인 계산 

오프로딩을 통해 위치 추정 정확도와 자원 효율성을 모두 향상시키는 "EnergyMap" 프레임워크를 제안한다. 

 

Ⅰ. 서 론  

깊이 카메라 기반 Visual SLAM 시스템은 환경 인식과 

위치 추정에 효과적이지만 계산 비용이 높은 문제가 있다. 

[1] 엣지 컴퓨팅은 이러한 문제를 해결하기 위한 

접근법이지만, 기존 엣지 기반 SLAM 시스템들은 (1) 

모든 이미지 영역을 동일한 중요도로 처리하고 (2) 정적 

오프로딩 전략을 사용하며 (3) 환경 변화 학습 및 적응 

메커니즘이 부족하다. 본 논문에서는 픽셀 에너지 

변화량을 분석하여 중요 영역에 계산 리소스를 집중시키고, 

환경 변화에 동적으로 적응하는 "EnergyMap" 

프레임워크를 제안한다. 

Ⅱ. 본 론  

EnergyMap 프레임워크를 다음과 같이 세가지 모듈로 

구성하도록 한다. 

✓ 픽셀 에너지 변화 추적기(PECT) 

시간 t 에서의 이미지 프레임을 It, 해당 깊이 맵을 Dt 라고 

할 때, 픽셀 위치 (x,y)에서의 에너지 Et(x,y)는 다음과 

같이 정의된다. 

Et(x, y) = α ⋅ Gt(x, y) + β ⋅ Ct(x, y) + γ ⋅ Tt(x, y)             식 1 

Gt(x, y) = √Gx
2 + Gy

2                                             식 2 

픽셀 에너지 변화 추적기(PECT)는 연속 프레임 간 픽셀 

에너지 변화량을 계산하고 중요 영역을 식별하는 

알고리즘이다. 연속된 두 프레임 간 에너지 변화량은 

광류(optical flow)를 통해 대응하는 픽셀 위치를 찾아 

계산하며(식 3), 이 변화량이 임계값을 초과하는 픽셀들을 

중요 픽셀로 식별한다. (식 5) 중요 픽셀들은 연결 

컴포넌트 라벨링 알고리즘을 통해 중요 영역(ROI) (식 

6)으로 그룹화되고, 각 ROI 의 중요도 점수는 포함된 

픽셀들의 평균 에너지 변화량 (식 7)으로 계산된다. 

시간적 일관성을 유지하기 위해 칼만 필터(식 8-12)를 

적용하여 ROI 의 위치, 크기, 속도를 추적하며, 이를 통해 

프레임 간 ROI 변화를 안정적으로 관리한다. 이러한 

메커니즘은 계산 자원이 제한된 환경에서도 중요 영역에 

집중하여 위치 추정 정확도를 유지하면서 자원 효율성을 

향상시킨다. 

ΔEt(x, y) = |Et(x, y) − Et−1(x′, y′)|                     식 3 

Pimp(x, y) = 1, ifΔEt(x, y) > τ 

Pimp(x, y) = 0, otherwise 
식 4 

R_i =  {(x, y) | P_{imp}(x, y)  

=  1 "{ and } (x, y) "{ is connected}} 

                   식 5 

S(Ri) =
1

|Ri|
∑ ΔEt(x, y)(x,y)∈Ri

                              식 6                       

Xt|t−1i=FX
t−1|t−1i

 

식 7 

Pt|t−1i=FP
t−1|t−1iFT+Q

 

식 8 

𝐾𝑡 = 𝑃𝑡𝐻𝑇(𝐻𝑃𝑡𝐻𝑇 + 𝑅)−1 
                      식 9 

𝑋𝑡 = 𝑋𝑡−1 + 𝐾𝑡(𝑍𝑡 − 𝐻𝑋𝑡−1) 
                   식 10 

Pt|ti=(I−Kt
iH)P

t|t−1i
 

                                                식 11 

✓ 에너지 기반 우선순위 오프로딩 스케줄러(EPOS) 

EPOS 는 ROI 우선순위에 따라 작업을 차별적으로 

스케줄링하고 오프로딩 한다. 우선순위는 다음과 같이 

계산된다: 

    𝑃(𝑅𝑖) = 𝜔1 ⋅ 𝑆(𝑅𝑖) + 𝜔2 ⋅ 𝐷(𝑅𝑖) + 𝜔3 ⋅ 𝑉(𝑅𝑖)        식 12 

여기서 S(Ri)는 중요도 점수, D(Ri)는 깊이 변화율, 

V(Ri)는 가시성 빈도이다. 우선순위에 따라 ROI 를 

HP(High Priority), MP(Medium Priority), LP(Low 

Priority) 세 카테고리로 분류하고 오프로딩 전략을 

차별화한다. Mapit 메커니즘을 확장하여 ROI 우선순위에 

따른 효율적 데이터 전송을 구현한다. 
 

✓ 적응형 환경 학습 및 갱신 모듈(AELU) 

AELU 는 환경 변화 패턴을 학습하고 맵 정보를 

동적으로 갱신한다. 시공간 에너지 패턴 함수를 정의하고 

최소 제곱법으로 매개변수를 추정한다. 

𝐸𝑝𝑎𝑡(𝑥, 𝑦, 𝑡) = ∑ 𝛼𝑖
𝑛−1
𝑖=0 ⋅ 𝐸𝑡−𝑖(𝑥, 𝑦) + 𝛽 ⋅ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙) + 𝛾 ⋅ 𝑡 

식 13 



학습된 패턴으로 미래 에너지 변화를 예측하고, 이를 

PECT와 EPOS에 피드백하여 우선순위 결정 및 오프로딩 

전략을 최적화한다. 적응형 가중치 함수로 맵 포인트를 

업데이트하고, 환경을 유형별로 분류하여 각 유형에 맞는 

최적 매개변수를 학습한다. 

Ⅲ. 실험 및 성능 평가 

제안된 EnergyMap 의 성능을 TUM RGB-D, KITTI, 

자체 수집 데이터셋에 RTAB-MAP, Edge-SLAM, 

SwarmMap[2]  시뮬레이션에서 위치 추정 정확도는 평균 

35% 향상(TUM RGB-D 데이터셋에서 평균 ATE 

1.87cm)되었으며, 프레임 처리 시간 25% 단축, CPU 

사용량 32% 절감, 대역폭 사용량 42% 감소, 전력 소비량 

38% 절감(평균 2.8W)의 성능을 보였다. 

 

 
그림 1. 시스템 성능 비교 

특히 High Priority[3] 영역은 전체 처리 시간의 16%만 

차지하면서도 위치 추정 정확도에 72%의 기여를 하여, 

중요 영역에 계산 리소스를 집중하는 전략의 효과성을 

입증한다. 

  

그림 2. 우선순위 영역별 성능 

EnergyMap 프레임워크는 기존 시스템보다 처리 

시간을 39.78% 단축하여 7384.44ms 에서 

4447.27ms 로 줄임으로써 효율적인 계산 오프로딩과 

우선순위 기반 처리 전략의 효과를 입증하였다. 

그림 3. 오프로딩 처리 시간 비교 

EnergyMap 의 PECT 모듈은 연속 프레임에서 픽셀 

에너지 변화량을 분석하여 중요 영역을 효과적으로 

식별한다. 그림 4 에서 볼 수 있듯이, 원본 프레임(좌)에서 

움직이는 파란색 원형 객체의 주변에서 높은 에너지 

변화가 감지되며(중), 이는 임계값(τ≈93.5)을 초과하는 

중요 픽셀로 식별된다(우). 특히 객체의 경계 부분에서 

에너지 변화가 두드러지게 나타나며, 이러한 중요 

픽셀들은 ROI 형성과 우선순위 결정에 활용되어 계산 

자원을 효율적으로 할당할 수 있게 한다. 임계값이 

93.5~93.6 사이로 일정하게 유지되는 것은 알고리즘이 

픽셀 에너지 변화량의 상위 25%를 안정적으로 중요 

픽셀로 분류함을 보여준다.  

 
그림 4. PECT(픽셀 에너지 변화 추적기)의 중요 영역 

검출 결과. 왼쪽: 원본 프레임, 중간: 에너지 변화 맵, 

오른쪽: 중요 픽셀 식별(τ=93.5) 

 

IV. 결 론 및 향후 연구 

본 논문에서는 깊이 카메라 기반 Visual SLAM 

시스템에서 픽셀 에너지 변화량 분석, 우선순위 기반 

오프로딩, 환경 적응 메커니즘을 통합 EnergyMap 

프레임워크를 제안하였다. 실험 결과, 위치 추정 정확도 

35% 향상, 대역폭 사용량 42% 감소, 에너지 소비 38% 

절감, 환경 적응성 40% 개선 등의 성능을 보였다. 향후 

연구로는 다중 에이전트 환경에서의 협업적 우선순위 결정, 

딥 러닝 기반 에너지 변화 패턴 예측, 의미론적 정보 통합 

등을 고려하고 있다. 
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