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1. Data Characteristics and Preprocessing
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<Fig.1 left: Split and distribution, right :Sample image>
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1. Overfitting Mitigation Strategies
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<Fig. 2. Image Augmentation>
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<Fig. 3. Learning Curve>
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Model Accuracy Precision Recall Fl-score

ResNeisl 1.69604% 0601562 O6ITTIT 0606299
EfficientNet-B0 0.738602 0688679  0.579365 062931
EfficientNet-B4 (1.768907 0701613 06076 1.696
ConvNeXt-tiny 0.617021 [} 0.0 0.0
Vision Transformer-Base-16(Vit) 0.553191 0373494 0246032 0.296651

YOLO vIT nano 0.68997 0.633333 0452381 0.527778

<Table 1. Models Performance>
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