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요 약

본 논문은 hardware impairment를 고려한 계층형 CNN (convolutional neural network) 기반 자동 변조 분류 알고리즘을 제시한다.
실 통신 환경에서 hardware impairment 발생 시 수신 신호 정보가 왜곡되어 자동 변조 분류 성능이 급락한다. 이 때, hardware
impairment에 따라 달라지는 왜곡 특성을 반영하기 위하여 다수의 분류기를 활용하며, 제안 알고리즘은 다수의 분류기를 활용한
계층형 CNN을 통하여 변조 기법을 추정한다. 시뮬레이션 결과, 제안 알고리즘이 기존 단일 CNN 기반 분류기에 비하여 높은 변조
분류 성능을 나타냄을 확인하였으며, 다수의 hardware impairment가 존재하는 통신 환경에 강인함을 확인하였다.

I. 서 론
자동 변조 분류는 수신 신호에 대한 사전정보 없이 신호의 변조

방식을 식별하는 기술로, 신호 복조 및 원 신호 복원을 목적으로
한다 [1]. 최근 딥러닝 기반의 자동 변조 분류 연구가 활발히
진행되고 있으나 [2-3], hardware impairment 발생으로 인하여 수신
신호 정보가 왜곡되는 실 통신 환경에 적용 시 분류 성능이 급락한다
[4]. 따라서 본 논문에서는 hardware impairment가 존재하는
환경에서도 강인한 성능을 유지하도록 설계된 multi-input
hierarchical CNN (convolutional neural network) 기반 자동 변조
분류 알고리즘을 제안하고 성능을 분석한다.

II. Hardware Impairment를 고려한 신호 모델
본 논문은 그림 1과 같이 단일 신호원으로부터 전송된 송신

신호가 수신단의 hardware impairment로 인하여 왜곡되는 신호
수신 시나리오를 고려한다. 본 논문에서 고려하는 hardware
impairment 요소는 위상 잡음, I/Q (in-phase/quadrature) 진폭 및
위상 불균형, I/Q DC (direct current) offset, CFO (carrier frequency
offset), 2차 및 3차 비선형 왜곡이며, 송신 신호 에 대한 수신
신호 는 다음과 같이 정의된다.
  ⋅⋅   ⋅      (1)

여기서 는 위상 잡음, 는 I/Q DC offset, 는 CFO, 는
AWGN(additive white Gaussian noise)이다.      ⋅ 
이고  , 는 각각 I/Q 진폭 및 위상 불균형 계수이다. 비선형 왜곡는 다음과 같이 정의된다.

   
   

 (2)

여기서 , 는 각각 2차 및 3차 왜곡 계수를 나타낸다. 이는 RF
(radio frequency) 회로에서 발생하는 비선형 특성으로 신호의
크기에 비례하는 고차 항으로 표현된다.

III. 계층형 CNN 기반 자동 변조 분류
본 논문은 hardware impairment가 존재하는 환경에 적용가능한

multi-input hierarchical CNN 알고리즘을 제안한다. 제안
알고리즘은 변조 방식의 특성에 따라 그림 1과 같이 세 개의
계층으로 구성되며, 각 계층은 서로 다른 입력 데이터 형태 및 CNN
구조를 활용하여 분류 성능을 향상시킨다.
계층 1은 I/Q 시계열 데이터와 1차원 CNN을 활용하여 수신

신호를 아날로그 및 디지털 변조 신호로 이진 분류한다. 시간

그림 1 계층형 CNN 기반 자동 변조 분류 모식도

영역에서 아날로그 변조는 연속적인 진폭 및 주파수 변화를 보이며,
디지털 변조는 심볼 전환에 따른 불연속적 파형 특성을 나타낸다. 본
계층은 이러한 차이를 반영하기 위하여 복소 I/Q 시계열을 실수 및
허수 성분으로 분리한 2채널 입력으로 변환하고 1차원 CNN에
입력한다.
계층 2는 아날로그 및 디지털 신호를 각 신호 특성에 따라

분류한다. 계층 2a는 스펙트로그램과 2차원 CNN을 활용하여
아날로그 변조 신호를 AM(amplitude modulation)과 FM(frequency
modulation)으로 분류하며, 시간-주파수 도메인에서 주파수 성분이
연속적으로 분포하는 특성을 활용한다. 계층 2b는 변조 계열 간
상이한 도메인 특성을 반영하기 위하여 I/Q 시계열과
스펙트로그램의 하이브리드 입력을 활용하여 디지털 변조 신호를
FSK(frequency shift keying), PSK(phase shift keying),
APSK(amplitude and phase-shift keying) 계열로 분류하며, 각
입력은 1차원 및 2차원 CNN으로 각각 처리된 후 병합되어 계열
분류에 활용된다.
계층 3은 디지털 변조 신호를 계열별 세부 변조 방식으로

분류한다. 계층 3a와 3b는 constellation diagram과 1차원 CNN을
활용하여 각각 PSK 계열 신호를 BPSK(binary PSK),
QPSK(quardratic PSK), 8PSK, 16PSK로, APSK 계열 신호를
16APSK와 32APSK로 분류한다. PSK는 일정한 진폭에서 서로 다른
위상 값으로 심볼이 균일하게 분포하고, APSK는 복수의 진폭
레벨과 위상 값을 조합하여 심볼이 복소 평면상에 계층적으로
배치된다. 계층 3c는 스펙트로그램과 2차원 CNN을 활용하여 FSK
계열 신호를 FSK와 GMSK(Gaussian filtered minimum shift
keying)로 분류하며, 주파수 천이 방식에 따라 시간-주파수
도메인에서 나타나는 불연속적 주파수 전이 패턴을 학습한다.



IV. 시뮬레이션 결과 및 분석
본 논문은 hardware impairment가 존재하는 환경에서 자동 변조

분류를 수행하며 파라미터 설정은 표 1 및 표 2와 같다. 총 10개의
변조 방식에 대하여 각 변조 방식 및 SNR (signal-to-noise ratio) 별
1100개의 샘플을 생성하였다. 생성된 신호는 I/Q 시계열,
스펙트로그램, constellation diagram으로 변환되었으며, 각 변조
방식의 특성에 적합한 입력 형태를 선택하여 CNN 모델에
적용하였다. 입력 유형에 따라 epoch 수는 달리 적용하였다.
그림 2는 SNR에 따른 세 가지 모델 구조의 분류 정확도를 비교한

결과이다. Single-CNN은 단일 CNN으로 전체 변조 방식을 분류하며,
입력은 스펙트로그램으로 고정된다. Single-input hierarchical CNN은
계층형 CNN 구조이며, 모든 계층에서 스펙트로그램만을 입력으로
사용한다. Multi-input hierarchical CNN은 본 논문에서 제안하는
알고리즘으로, 변조 방식의 특성에 따라 계층별 입력을 상이하게한다.
제안 알고리즘은 모든 SNR에서 두 비교 모델보다 높은 분류 정확도를
달성하였다. Single-CNN은 단일 모델로 모든 변조 방식을 동시에
분류하므로, 변조 방식 별 상이한 특성의 학습이 어려워 낮은 SNR에서
분류 성능이 크게 저하되었다. 또한 Single-input hierarchical CNN은
모든 계층에서 동일한 입력을 사용하므로 변조 방식 별 특성을 충분히
반영하지 못한다. 제안 알고리즘은 계층형 CNN을 채택하여 신호를
단계적으로 분류함으로써 각 단계에서 보다 단순한 분류 문제를
처리하고, 계층별로 각 변조 특성에 적합한 입력을 적용함으로써 높은
분류 정확도를 달성하였다.

그림 3은 제안 알고리즘의 confusion matrix로, 변조 방식별 분류
성능을 시각적으로 나타낸다. 시뮬레이션 결과, AM, FM, FSK는 각각
98%, 96%, 92%의 높은 분류 정확도를 달성하였다. 특히 AM과 FM은
스펙트로그램에서 뚜렷한 시간-주파수 패턴을 갖기 때문에 2D CNN을
통한 학습이 효과적으로 이루어진 것으로 판단된다. 반면 8PSK는
16PSK로 44%, 16PSK는 8PSK로 36% 오분류되었으며, 16APSK는
32APSK로 17%, 32APSK는 16APSK로 16% 오분류되었다. 이는 위상
간격이 밀집된 고차 PSK 간, 또한 진폭 및 위상 조합이 유사한 APSK
간의 구조적 유사성에 의한 오차이다. 제안 알고리즘은 변조 기법별
특성에 따라 입력 표현과 모델 구조를 상이하게 설계함으로써 우수한
분류 성능을 달성하였다.

V. 결론 및 연구 방향
본 논문은 hardware impairment가 존재하는 환경에서 계층형

CNN을 활용한 변조 분류 알고리즘을 제시한다. 시뮬레이션 결과,
제안 알고리즘이 단일 CNN 혹은 단일 입력을 사용하는 경우에
비하여 높은 분류 정확도를 달성함을 확인하였다. 향후 연구로는
다수의 channel impairment 및 hardware impairment에 모두 대응
가능한 딥러닝 기반 자동 변조 분류 알고리즘 개발 및 성능 분석이
고려된다.
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파라미터 값
위상 잡음 0.001

I/Q 진폭 불균형 0.01
I/Q 위상 불균형 0.005
In-phase DC 오프셋 0.001
Quadrature DC 오프셋 0.001
2차 비선형 왜곡 계수 0.003
3차 비선형 왜곡 계수 0.001

표 2. Hardware Impairment 파라미터 설정

파라미터 값
변조 기법

후보

AM, FM, FSK, GMSK, 16APSK,

32APSK, BPSK, QPSK, 8PSK, 16PSK
SNR -10 ~ +10 dB (2 dB 간격)

epoch
10 (spectrogram/IQ 시계열)
30 (constellation diagram)

표 1. 변조 분류 실험 환경

그림 2 SNR에 따른 CNN 기반 변조 분류 알고리즘 성능 비교

그림 3 계층형 CNN 기반 변조 분류 Confusion Matrix


