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Abstract 

 
In this paper, we present a GPU accelerated AI-RAN system combined Transformer based channel and phase 

estimation with an FPGA implemented OFDM transceiver, high-throughput, and low-latency wireless communication. 

 

Ⅰ. Introduction 

The growing importance of AI systems in mmWave 

communications has underscored the need for GPU 

based high performance processing and practical 

system implementation [1]. In this paper, we propose 

a GPU based AI-RAN system that incorporates 

Transformer based training for channel estimation and 

phase noise (PN) compensation, implements ultra-

high-speed communication on a field programmable 

gate array (FPGA), and analyzes GPU based channel 

estimation and simulation results. Finally, we discuss 

plans for developing a 28 GHz prototype transceiver 

testbed under real channel conditions. 

 

Ⅱ. Method 

A. System Model 

 
Fig 1. System Structure 

The OFDM transceiver comprises a PXIe-5785 

FPGA module. OFDM frames are transmitted from the 

FPGA to a LabVIEW host, propagated through a 

virtually generated channel and PN environment, and 

then received by the FPGA. The LabVIEW host 

program extracts the Rx frames and forwards them to 

a Python-based processing module over Transmission 

Control Protocol/Internet Protocol (TCP/IP). In the 

inference module, the saved Transformer-based 

estimator model is loaded, and high-speed estimation, 

equalization, log-likelihood ratio (LLR) computation, 

and error-vector magnitude (EVM) calculation are 

performed on the GPU. 

B. Transformer Training 

The Transformer is trained on NYUSIM channel data 

from five scenarios (UMi, UMa, RMa, InH, InF), each 

under both LOS and NLOS conditions. OFDM symbols 

include Demodulation Reference Signals (DM-RS) in 

the first symbol of each slot for channel estimation 

and Phase Tracking Reference Signals (PT-RS) at 

every 48n + 6th subcarrier for PN estimation. The 

Transformer uses these signals as inputs and outputs 

estimated channel and PN components along with 

attention weights. 

C. OFDM Transceiver 

 

Fig 2. Structure of OFDM Transceiver 

In the OFDM transceiver subsystem, the FPGA 

generates OFDM frames and receives incoming 

signals. The LabVIEW host performs virtual channel 

modeling, Fast Fourier Transform (FFT) processing, 

and TCP/IP communication with a Python server. The 

Python server then relays the received data and 

performs signal estimation and compensation using the 

saved Transformer model. 



D. GPU Based Channel and PN Inference 

 

Fig 3. Inference Structure 

Prior to inference, the pretrained Transformer 

model is optimized as a TensorRT engine for GPU 

execution. Signals received via TCP/IP are queued 

and batched by workers, then transferred to GPU. 

Each batch is assigned to a separate CUDA stream, 

where channel state and PN estimation occur, 

followed sequentially by CuPy-based equalization and 

EVM calculation. Finally, LLR computation is 

performed using a dedicated CUDA kernel invoked 

once per stream, internally generating multiple CUDA 

blocks and threads for parallel processing. 

Ⅲ. Simulation Result 

  

Fig 4. DM-RS VS Estimated CH   Fig 5. Constellation 

As shown in Fig. 4, the real and imaginary 

components of DM-RS after propagation through the 

virtual channel closely trace the original channel 

response when reconstructed by the estimator, 

demonstrating high-fidelity recovery. Fig. 5 shows the 

256 QAM constellation diagram, where symbol 

clusters are tightly separated with negligible overlap. 

   

Fig 6. LLR Histogram        Fig 7. LLR Value  

As shown in Fig. 6 and 7, the 256 QAM LLR 

histogram and per-bit average |LLR| values 

demonstrate excellent demodulation performance. 

 

BER EVM(dB) SNR(dB) 

5.8×10⁻³ -19.78 22.14 

Table 1. System Performance 

As shown in Table 1, the average BER is 5.8×10⁻³, 

EVM is -19.78dB, and SNR is 22.14 dB, confirming 

excellent reception performance. 

 

Fig 8. Throughput of GPU worker and batch 

   

Fig 9. NMSE of Channel and PN 

Fig. 8 shows that throughput increases with more 

GPU workers and larger batch sizes, where one varies 

while the other is fixed to 3. Further gains are 

observed with TensorRT acceleration. Fig. 9 shows 

normalized mean square error (NMSE) versus SNR for 

channel and PN estimation.  

All graphs consistently show that performance 

improves due to GPU techniques involving increased 

workers, larger batch sizes, and TensorRT 

acceleration. 

IV. Conclusion 

This paper presents a GPU accelerated AI-RAN 

mmWave system that combines a Transformer based 

channel and phase noise estimator with an FPGA  

OFDM transceiver. The pretrained model, optimized as 

a TensorRT engine and executed across multiple 

CUDA streams, enables high throughput channel and 

phase noise estimation. Simulation results 

demonstrate a BER of 5.8×10⁻³, an EVM of – 19.78 

dB, and a SNR of 22.14 dB, with robust NMSE 

performance. Future work includes developing a 28 

GHz prototype transceiver, extending the system 

optimizing hardware and model architectures for 6G 

RAN and IoT applications.  

 

ACKNOWLEDGMENT   

This work was supported by the BK21 FOUR Project.  

 

REFERENCES 

[1] N. A. Khan and S. Schmid, "AI-RAN in 6G Networks: 

State-of-the-Art and Challenges," in IEEE Open Journal 

of the Communications Society, vol. 5, pp. 294-311, 2024 

 


