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Abstract

In this paper, we present a GPU accelerated AI-RAN system combined Transformer based channel and phase

I . Introduction

The growing importance of Al systems in mmWave
communications has underscored the need for GPU
based high performance processing and practical
system implementation [1]. In this paper, we propose
a GPU based AI-RAN system that incorporates
Transformer based training for channel estimation and
phase noise (PN) compensation, implements ultra-—
high-speed communication on a field programmable
gate array (FPGA), and analyzes GPU based channel
estimation and simulation results. Finally, we discuss
plans for developing a 28 GHz prototype transceiver
testbed under real channel conditions.

II. Method

A. System Model
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Fig 1. System Structure

The OFDM transceiver comprises a PXle-5785
FPGA module. OFDM frames are transmitted from the
FPGA to a LabVIEW host, propagated through a
virtually generated channel and PN environment, and
then received by the FPGA. The LabVIEW host
program extracts the Rx frames and forwards them to
a Python-based processing module over Transmission
Control Protocol/Internet Protocol (TCP/IP). In the
inference module, the saved Transformer-based

estimation with an FPGA implemented OFDM transceiver, high—throughput, and low-latency wireless communication.

estimator model is loaded, and high-speed estimation,
equalization, log-likelihood ratio (LLR) computation,
and error-vector magnitude (EVM) calculation are
performed on the GPU.

B. Transformer Training

The Transformer is trained on NYUSIM channel data
from five scenarios (UMi, UMa, RMa, InH, InF), each
under both LOS and NLOS conditions. OFDM symbols
include Demodulation Reference Signals (DM-RS) in
the first symbol of each slot for channel estimation
and Phase Tracking Reference Signals (PT-RS) at
every 48n + 6th subcarrier for PN estimation. The
Transformer uses these signals as inputs and outputs
estimated channel and PN components along with
attention weights.

C. OFDM Transceiver
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Fig 2. Structure of OFDM Transceiver

In the OFDM transceiver subsystem, the FPGA
generates OFDM frames and receives incoming
signals. The LabVIEW host performs virtual channel
modeling, Fast Fourier Transform (FFT) processing,
and TCP/IP communication with a Python server. The
Python server then relays the received data and
performs signal estimation and compensation using the
saved Transformer model.



D. GPU Based Channel and PN Inference
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Fig 3. Inference Structure

Prior to inference, the pretrained Transformer
model is optimized as a TensorRT engine for GPU
execution. Signals received via TCP/IP are queued
and batched by workers, then transferred to GPU.
Each batch is assigned to a separate CUDA stream,
where channel state and PN estimation occur,
followed sequentially by CuPy-based equalization and
EVM calculation. Finally, LLR computation is
performed using a dedicated CUDA kernel invoked
once per stream, internally generating multiple CUDA
blocks and threads for parallel processing.

. Simulation Result
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Fig 4. DM-RS VS Estimated CH Fig 5. Constellation

As shown in Fig. 4, the real and imaginary
components of DM-RS after propagation through the
virtual channel closely trace the original channel
response when reconstructed by the estimator,
demonstrating high—fidelity recovery. Fig. 5 shows the
256 QAM constellation diagram, where symbol
clusters are tightly separated with negligible overlap.

 Awerage LLR] per Symbal (25604M)
ot U] phe yomion ESS0AG Awerage [LLR] per Bit Positian (2560AM)

Fig 6. LLR Histogram Fig 7. LLR Value

As shown in Fig. 6 and 7, the 256 QAM LLR
histogram and per-bit average |LLR| values
demonstrate excellent demodulation performance.

BER EVM(dB)
5.8x10% -19.78

SNR(dB)
22.14

Table 1. System Performance

As shown in Table 1, the average BER is 5.8x1073,
EVM is -19.78dB, and SNR is 22.14 dB, confirming
excellent reception performance.
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Fig 9. NMSE of Channel and PN

Fig. 8 shows that throughput increases with more
GPU workers and larger batch sizes, where one varies
while the other is fixed to 3. Further gains are
observed with TensorRT acceleration. Fig. 9 shows
normalized mean square error (NMSE) versus SNR for
channel and PN estimation.

All graphs consistently show that performance
improves due to GPU techniques involving increased
workers, larger batch sizes, and TensorRT
acceleration.

IV. Conclusion

This paper presents a GPU accelerated AI-RAN
mmWave system that combines a Transformer based
channel and phase noise estimator with an FPGA
OFDM transceiver. The pretrained model, optimized as
a TensorRT engine and executed across multiple
CUDA streams, enables high throughput channel and
phase noise estimation. Simulation results
demonstrate a BER of 5.8x107, an EVM of — 19.78
dB, and a SNR of 22.14 dB, with robust NMSE
performance. Future work includes developing a 28
GHz prototype transceiver, extending the system
optimizing hardware and model architectures for 6G
RAN and IoT applications.
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