

지리 분산 학습 환경에서 GPU 성능을 고려한

배치 크기 및 로컬 스텝 수 조정 기법

신정윤, 신창용, 유혁, 양경식

고려대학교 정보대학 컴퓨터학과

sjysjy2002@korea.ac.kr, {cyshin,chuckyoo}@os.korea.ac.kr, g_yang@korea.ac.kr

GPU Performance-Aware Batch Size and Local Step

Adjustment for Efficient Geo-Distributed Training

Jungyoon Shin, Changyong Shin, Chuck Yoo, Gyeongsik Yang

Department of Computer Science and Engineering, Korea University

요 약

본 논문은 지리적으로 분산된 환경에서 거대 언어 모델 학습 시 GPU 의 이기종성으로 인해 발생하는 GPU 유휴 문제를

완화하기 위한 GPU 성능 기반의 배치 크기 및 로컬 스텝 수 조정 기법을 제안한다. 지리 분산 학습 환경에서는 GPU

성능의 차이로 인해 동기화 시점에 빠른 노드가 느린 노드를 기다리면서 GPU 유휴가 발생하여 자원 활용률이 저하된다.

이를 해결하기 위해 본 연구에서는 GPU 연산 성능과 메모리 크기를 기준으로 배치 크기 및 로컬 스텝 수를 조정하는

기법을 제시하고, 이를 실험적으로 평가하였다. 실험 결과, 배치 크기 조정은 GPU 유휴 시간을 오히려 증가시켰으나,

GPU 성능 기반의 로컬 스텝 수 조정은 GPU 유휴 시간을 약 39% 감소시켜, GPU 자원의 효율적인 활용과 동기화 병목

완화에 효과적임을 확인하였다.

Ⅰ. 서 론

최근 자연어 처리 분야에서는 거대 언어 모델(Large

Language Model, LLM)이 다양한 과제를 효과적으로

해결하며 높은 성능을 보이고 있다. 이에 따라 기업뿐

아니라 개인 연구자들도 자신만의 LLM 을 구축하려는

수요가 증가하고 있다. 그러나 수십억 개 이상의

파라미터를 가진 LLM 을 학습하기 위해서는 대규모

GPU 클러스터가 필요하며, 단일 지역 내에서 많은 양의

GPU 자원을 확보하는 것은 어려움이 있다[1].

이러한 한계를 극복하기 위해 지리적으로 분산된 GPU

자원을 통합해 학습을 수행하는 지리적 분산 학습(Geo-

Distributed Training, GDT)이 주목받고 있다. GDT

환경에서는 광역 통신망(wide-area network, WAN)의

낮은 대역폭과 높은 지연으로 인해, 각 노드가 학습한

그래디언트(gradient)의 동기화 시 병목이 발생한다.

이를 완화하기 위해 Local SGD[2]나 DiLoCo[3]와 같은

계층적 최적화기법이 제안되었다.

하지만 기존 연구는 GPU 의 이기종성(heterogeneity),

즉 GPU 의 연산 성능 및 메모리 크기 차이를 충분히

고려하지 않았다. 이로 인해 성능이 뛰어난 GPU 를 갖춘

노드는 상대적으로 성능이 낮은 GPU 를 갖춘 노드가

로컬 학습을 완료할 때까지 대기하게 되며, 이는 동기화

시점에서 GPU 자원의 비효율적인 유휴 시간을 초래한다.

이에 본 연구는 GPU 연산 성능 및 메모리 크기에 따라

배치 크기와 로컬 스텝 수를 조정하는 기법을 제안하며,

GDT 환경에서 GPU 유휴를 줄이고 LLM 학습 효율을

개선하는 것을 목표로 한다.

Ⅱ. 배경지식 및 관련 연구

지리 분산 학습. 지리적으로 분산된 환경에서의 학습은

모델의 일관성과 안정적인 수렴을 위해 개별 노드가

학습한 그래디언트에 대한 동기화를 필수적으로

요구한다. 이때 동기화 과정에서 WAN 네트워크의

고지연, 저대역폭 특성으로 인해 병목이 발생한다.

DiLoCo. DiLoCo[3]는 지리적으로 분산된 환경에서 거대

언어 모델의 효율적인 학습을 위해 계층적 최적화

기법을 제안한다. 구체적으로, 각 지리 분산 노드는

사전에 정의된 여러 번의 로컬 학습(스텝) 및 최적화를

수행하며, 이때는 노드 간 동기화를 실시하지 않는다. 각

노드가 모두 로컬 스텝 수만큼 학습한 이후, 노드들은

생성한 그래디언트를 동기화 하기 위해 전역 최적화를

수행한다. 즉 이러한 계층적 접근법을 통해 동기화

횟수를 감소시켜 지리 분산 환경에서도 통신 비용을

최소화하면서 모델의 수렴을 보장하고 학습 효율을

극대화할 수 있다.

Ⅲ. 배치 크기 및 로컬 스텝 수 조정 기법

본 연구는 지리 분산 학습에서 각 노드의 GPU 유휴

시간을 개선하기 위해 아래 세가지 기법을 통해 배치

크기 및 로컬 스텝 수를 조정한다.

A. GPU 연산 성능에 비례하여 배치 크기 조정

B. GPU 메모리 크기를 고려하여 배치 크기 조정

C. GPU 연산 성능에 비례하여 로컬 스텝 수 조정

이를 위해 본 논문에서 사용한 GPU 들의 부동소수점

연산 성능과 GPU 메모리 크기를 NVIDIA 에서 제공하는

GPU 성능 지표를 참고하여 정리했다(표 1). 실험을 위해

총 4 대의 이기종 GPU 를 보유한 노드를 사용하였으며,

각 노드는 각각 4 개의 GPU 를 장착하고 있다.

부동소수점 연산 성능의 경우 노드 2 는 BF16 연산

성능을 기준으로 삼았으며, 나머지 노드는 FP16 연산

성능 지표를 사용했다. 또한 각 기법의 성능을 평가하기

위한 기준점(baseline)을 설정하고자 기존 연구를 참고하

여 배치 크기는 4, 로컬 스텝 수는 100 으로 설정하였다.

표1. GPU 성능 지표

노드

번호

GPU 정보 부동소수점 연산 성능
GPU 메모리

크기(GB) 기종 개수
FP16

(TFLOPS)

BF16

(TFLOPS)

1 2080 Ti 4 113.8 - 11

2
2080 Ti 3 113.8 - 11

Titan RTX 1 130 - 24

3 A30 4 165 165 24

4
RTX 3090 2 142 71 24

V100 2 125 - 32

배치 크기 조정 기법. 노드별 GPU 이기종성을 고려하여

배치 크기를 조정하기 위한 기법으로 다음 두 가지 기법

A, B 를 제안한다. 기법 A 는 GPU 부동소수점 연산

성능에 비례하여 배치 크기를 조정하는 기법이다. 표

2 는 각 노드별 평균 부동소수점 연산 성능 및 정규화

성능 지표이다. 노드 1, 노드 3 은 각각 FP16, BF16

자료형의 부동소수점 연산 성능을 사용했다. 노드 2,

노드 4 의 경우 다른 GPU 기종이 장착되어 있기 때문에,

각 GPU 의 부동소수점 연산 성능의 평균을 사용했다.

이후 가장 작은 부동소수점 연산 성능 값으로 정규화 한

뒤, 정규화 성능에 비례하게 배치 크기를 조정하였다.

기법 B 는 각 노드에서 배치 크기를 4 에서 두배씩

키워가며 out-of-memory 오류가 발생하지 않는 최대

배치 크기를 탐색했다. 이를 통해 GPU 메모리 자원을

최대한 활용할 수 있으며, 탐색 및 배치 크기 조정

결과는 표 2 와 같다.

로컬 스텝 수 조정 기법. 로컬 스텝 수 조정 기법(이하

기법 C)은 기법 A 의 방법론을 토대로 정규화 성능에

비례하게 로컬 스텝 수를 조정하였고, 조정 결과는 표

2 와 같다.

표2. 노드별 연산 성능 지표 및 기법별 조정 결과

노드

번호

성능 지표 기법 A 기법 B 기법 C

평균 연산

성능

정규화

성능

배치 크기

조정

배치 크기

조정

로컬 스텝 수

조정

1 113.8 1.000 4  4 4  8 100  100

2 117.9 1.036 4  4 4  8 100  104

3 165 1.450 4  6 4  32 100  145

4 133.5 1.173 4  5 4  16 100  117

IV. 실험 환경 및 실험 결과

실험 환경. 본 연구에서는 표 1 에 명시한 4 개의 이기종

GPU 노드로 지리 분산 학습 환경을 구성하여 실험을

진행했다. 각 노드는 1G 이더넷을 통해 연결되어 있으며,

학습에는 LLaMA 기반의 150M 개의 학습 파라미터

갖는 언어 모델을 사용했다. 전체 학습 스텝 수는 총

10 회의 동기화 및 전역 최적화를 실시하도록 설정했다.

지리 분산 학습 실험에는 DiLoCo 연구를 오픈소스로

구현한 OpenDiLoCo[4]를 각 노드가 서로 다른 배치

크기 및 로컬 스텝 수를 사용하여 학습할 수 있도록

수정하여 사용했다. CUDA 는 12.4, GPU

드라이버는 550.67, Python 은 3.11, Torch 는 2.3.1

버전을 사용했다.

실험 결과. 표 3 은 baseline 과 각 제안 기법의 GPU

유휴 시간을 측정하고 비교한 결과를 나타낸다.

Baseline 의 경우, 가장 높은 부동소수점 연산 성능을

갖춘 노드 3(표 1 참조)의 GPU 유휴 시간이 가장 긴

반면, 상대적으로 성능이 낮은 노드 1 과 2 는 유휴

시간이 거의 0 에 가깝다는 것을 확인할 수 있다. 배치

크기를 조정한 기법 A 와 B 의 총 GPU 유휴 시간은

표3. 기법 별 GPU 유휴 시간 측정 결과

기법
GPU 유휴 시간 (초) 총 GPU

유휴 시간 (초) 노드 1 노드 2 노드 3 노드 4

Baseline 1.1 0.0 14.6 4.9 20.6

A 11.9 0.0 14.7 13.8 40.4

B 6.8 7.2 0.0 14.4 28.4

C 2.1 0.0 8.6 1.9 12.6

각각 40.4 초와 28.4 초로, baseline 대비 각각 약 96%,

38% 증가하였다. 이는 배치 크기만을 조정하는 방식이

이기종 GPU 의 연산 성능 차이를 충분히 반영하지

못함을 시사한다.

 반면 로컬 스텝 수를 조정한 기법 C 의 경우 총 GPU

유휴 시간이 12.6 초로, baseline 대비 약 39% 감소하여

GPU 자원의 효율성을 향상시켰다. 이는 성능이 뛰어난

GPU 가 더 많은 로컬 스텝을 수행하도록 하여, 동기화

지점까지 각 노드에서 소요되는 로컬 학습 시간을

효과적으로 균형(balance) 있게 조정한 결과라고 해석할

수 있다.

V. 결론 및 향후 연구

본 연구는 지리적으로 분산된 환경에서 거대 언어

모델의 학습 시 GPU 의 이기종성으로 인해 발생하는

GPU 유휴 문제를 해결하고자 GPU 연산 성능 및 메모리

크기를 고려하여 배치 크기와 로컬 스텝 수를

적응적으로 조정하는 기법을 제안하였다. 실험 결과,

GPU 성능에 비례하여 로컬 스텝 수를 조정한 기법 C 의

경우, baseline 대비 GPU 유휴 시간이 약 39% 감소하여

가장 뛰어난 효율성을 보였다. 반면, 배치 크기만을

조정한 기법 A 와 B 는 오히려 GPU 유휴 시간이

증가하여, GPU 이기종성을 해소하는 데 한계를 보였다.

향후 연구로는 본 논문에서 수행한 로컬 스텝 수

조정과 배치 크기 조정 기법을 결합한 하이브리드

접근법을 탐색하고자 한다. 또한 노드 간 네트워크

특성을 반영한 보다 정교한 최적화 알고리즘을 설계하여

통신 병목까지 종합적으로 완화할 수 있는 연구를

진행할 계획이다.

ACKNOWLEDGMENT

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의

지원(RS-2023-NR077249, RS-2024-00336564), 정부(교육부)의

재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(RS-

2021-NR060143), 또한 본 연구는 Google Cloud Research

Credits program 의 지원을 받아 수행한 연구임.

참 고 문 헌

[1] Gandhi, Rohan, et al. "Improving training time and GPU

utilization in geo-distributed language model training."

arXiv preprint arXiv:2411.14458 (2024).

[2] McMahan, Brendan, et al. "Communication-efficient

learning of deep networks from decentralized data."

Artificial intelligence and statistics. PMLR, 2017.

[3] Douillard, Arthur, et al. "Diloco: Distributed low-

communication training of language models." arXiv

preprint arXiv:2311.08105 (2023).

[4] Jaghouar, Sami, Jack Min Ong, and Johannes Hagemann.

"Opendiloco: An open-source framework for globally

distributed low-communication training." arXiv preprint

arXiv:2407.07852 (2024).

