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요 약

본 논문은 전장 환경에서 적 신호원의 도래 각 (direction-of-arrival, DoA) 추정을 위해 경량 딥러닝 모델 중 회귀 기반 R-DNN
(regression-deep neural network)와 분류 기반 DAE-DNN (denoising autoencoder-deep neural network)의 성능을 비교한다. 전장 환경에서
적 신호원을추정하기 위해서는정확성과 빠른 추론 능력이요구되기 때문에 본 연구는 연산 효율이 높은 경량 딥러닝 모델을채택한다. 실험은
가상 전장 환경을구성하고, 성능 평가는 RMSE (root mean square error), 추론 시간 (inference time), 파라미터수를 기준으로 실시한다. 이에
따라 본 논문은 환경 조건에 따라 적합한 모델 선택의 타당성을 입증하고, 구현한 모델의 실시간 전장 배치를 위한 실용적 방향을 제시한다.

I. 서 론
도래각 (direction-of-arrival, DoA) 추정은레이더, 무선통신, 신호원의
위치 추정 등에 중추적인 기술이다 [1]. 고전기법인 MUSIC (multiple
signal classification) 등의 알고리즘은고 SNR 환경에서 우수한 성능을
보이지만 저 SNR, 간섭, 실시간 처리와 같은 환경에서는 정확성이 크게
저하된다 [2]. 최근 CNN (convolutional neural network), DeepMUSIC
등 고도화된 딥러닝 구조도 제안되었으나, 높은 연산량과 복잡한
네트워크 구조로 임베디드 시스템에 사용하기에는 부적절하다. 이에
따라 본 연구에서는 경량 DNN모델인R-DNN (regression-deep neural
network)와DAE-DNN (denoising autoencoder-deep neural network)을
비교하며, 전장 환경에서 두 모델의 실용성을 평가한다.

II. 경량 딥러닝 기반 도래 각 추정을 위한 시스템 모델
딥러닝 모델은 입력, 은닉, 출력층으로 구성되며, 본 연구의 R-DNN과
DAE-DNN은 동일한 입력 벡터를 사용한다. 입력은 배열 안테나로부터
수집된 신호 데이터를 기반으로 계산된 공분산 행렬 R 의 상삼각
비대각 성분을 벡터화한 복소 벡터 b 이며, 다음과 같이 정의된다 [2].

b        ⋯        ⋯    
⊤  (1)

이후 실수부와 허수부를 각각 분리하고 결합한 뒤, 2-노름으로

정규화하여 실수 입력 벡터 z 를 구성한다.
z  Real b ⊤ Imag b ⊤ 

⊤

  b   (2)

이때, 동일한 입력 벡터 z 를 사용하더라도, R-DNN과 DAE-DNN은
은닉층의 구성 방식과 출력 형태에서 서로 다른 구조적 특성을 가진다.

R-DNN은 회귀 (regression) 방식을 적용하여, 입력 벡터 z 를 받아
총 개의 층을 통해 도래 각을 추정한다. 각 은닉층에서는 다음과 같은
연산이 수행된다.

ne t   W  h   b  h   tanh  ne t    (3)

여기서   , W  , b 는 각각 번째 은닉층의 출력벡터, 가중치 그리고

편향을 의미하며, tanh는 비선형성을 제공하는 활성화 함수이다.
이후, 출력층에서는 마지막 은닉층의 출력을 선형 결합하여, 도래 각을

실숫값으로 직접 예측한 추정 벡터  를 생성한다.
  ne t   W h   b   (4)

DAE-DNN은 분류 (classification) 방식을 적용하여, 입력 벡터 z 를
받아잡음을제거하고각도공간을구간별로나누어도래각을추정한다.
전체 모델은 DAE (denoising autoencoder)와 병렬 다중 분류기로
구성되며, 각 서브영역 (sub-area) 내에서 신호 존재 확률을 출력한 뒤,
이를 기반으로 연속적인 추정값을 산출한다.

(a) R-DNN의 도래 각 추정 알고리즘

(b) DAE-DNN의 도래 각 추정 알고리즘

그림 2. 경량 딥러닝 시스템 모델의 도래각 추정 알고리즘

입력 벡터 z 는 먼저 DAE를 통과하여, 잡음에 강인한 신호 표현으로
변환된다. 이는 분류기의 도래 각 예측 성능 향상을 위한 전처리
과정이다. 구조와 학습 방식은 [3]의 Section III-A를 참고하면 된다.
DAE 출력을 입력으로 받는 분류기는 전체 각도 공간을 고정된
구간으로 나누어 병렬적으로 구성된다. 각 분류기의 은닉층은 입력값을
비선형적으로 변환하며, 출력층에서는 해당 구간 내후보각도들에대한
존재 확률을 확률 분포 기반인 Softmax 함수로 계산한다.

y  SoftmaxW e d  b e   (5)

여기서 d 는 DAE의 출력벡터, W  , b 는각각추정분류기출력층의

가중치와 편향이다. y 는 각도 구간 내 세분화된 각도 지점 (grid)에
대한 신호 존재 확률 벡터이며, 각 후보 각도에 대한 탐지 (detection)를
수행한다. 이후 각 grid의 중심 각도  와 확률 y i의 가중합을 통해
연속적인 추정 (estimation)을 수행하여 추정 벡터  를 생성한다.

   iyi i  (6)

III. 경량 딥러닝 시스템 모델의 도래 각 추정 알고리즘
R-DNN은 도래 각 추정 시, 그림 1의 (a)와 같이 실제 도래 각 과
모델 출력값  사이의 MSE (mean squared error)를 줄여나가며
반복적으로 학습된다. 이때 최적 파라미터 는 다음과 같이 정의된다.

  arg min  


  



      
  (7)

여기서 는 학습 샘플의 개수이며, 학습이 완료된 모델은 새로운

입력에 대해 실숫값 형태의 연속적인 도래 각 를 직접 출력한다.



DAE-DNN 기반도래 각 추정은 그림 1의 (b)와 같이 입력 벡터 z 를
DAE에 통과시켜 잡음이 제거된 벡터 d 에 가까운 복원 벡터 d ​를

생성한다. 이때, 복원 성능의 정량적 평가를위해입력과복원벡터간의
재구성 오차 (reconstruction error)를 손실 함수    로 정의한다.

     


d   

d    
  (8)

여기서 는 번째 입력 샘플로, 학습은 이 손실 함수를 줄여나가는

방향으로 진행된다.

그림 1의 (b)를 보면, 복원된 벡터 d 는 Sub-area 분류기에 입력되어Softmax 함수를 통해 각 후보 각도에 대한 확률 분포 y 를 출력한다.
이 확률분포는수식 (6)과 같이각후보각도에대해가중치를부여하여

보간 (imterpolation)을 수행하고, 그 결과로 최종 추정값 가 추론
단계에서 출력된다.

Ⅳ. 시뮬레이션 설정 및 결과 분석
본 실험은 단일 위협을 가정하고, ULA (uniform linear array) 구조를
기반으로 협대역 (narrowband) 및 원거리 (far-field) 조건을 전제로
한다. 이때, 저 SNR은 전자전/간섭 환경, 고 SNR은 평시 통신 환경을
모사한다. 두 모델은 동일한 실험 조건 구성을 위해 같은 공분산 행렬
기반의 입력 벡터를 사용하였고, 전체 데이터 세트는 4 : 1 비율로 학습
및검증용을분할하며 200 epochs까지 학습하였다. 성능 평가는각 SNR
조건별로 생성된 테스트 세트를 바탕으로 몬테카를로 시뮬레이션
방식을사용하였다. 이때, 도래 각추정성능 평가 지표로서 RMSE (root
mean square error)를 사용하며 그 정의는 아래와 같다.

RMSE  





  



    
 (9)

여기서 은 테스트 샘플의 수로, 본 실험에서는 400개로 설정하였다.

그림 1은 SNR 변화에 따른 두 모델의 추정 정확도를 RMSE를
기준으로 비교한결과이다. 전반적으로 SNR이낮아질수록 두모델모두
추정 정확도가 낮아졌지만, 성능이 완만하게 감소하는 DAE-DNN에
비해 R-DNN은 –5dB 이하의 잡음 환경에서 뚜렷한 성능 저하를
보였다. 반대로 5dB 이상의 환경에서는 상대적으로 R-DNN이 더 나은
추정 정확도를 나타냈다. 이는 각 모델의 구조 및 출력 방식의 차이에
의한 결과 때문으로 보여진다. 즉, SNR의 수준에 따라 적합한 모델이
달라질 수 있으며, 잡음 및 간섭 환경이 심할 것으로 추정되는 전장
환경에서는 DAE-DNN이 더 적합하다고 판단된다.

표 2는 그림 1에서 각 SNR에 따라 두 모델별로 구한 추론 시간
(inference time)의 평균과 모델 파라미터 수를 비교한 결과이며, 실험은
NVIDIA GeForce RTX 2070 SUPER 환경에서 실행하였다. 표 2의
파라미터 수를 보면 R-DNN이 DAE-DNN에 비해 상대적으로 간결한
구조를 가지며 연산량이 더 적은 경량 모델임을 알 수 있다. 실제 두
모델의 추론 시간에 대한 경향성을 비교해 보면 대체적으로 R-DNN이
DAE-DNN에 비해 더 빠른 추론을 함으로써 높은 연산 효율성을
나타낸다. 이는 실시간성이 중요한 전장 환경에서 R-DNN이 더 적합할
수 있음을 보여준다.

구 분 값
수신 안테나 수 (M) 8

스냅샷 수 (N) 200

신호 수 (P) 1

SNR -10 ~ 30dB (5dB 간격)

측정 지표 RMSE, 평균 추론 시간, 파라미터 수

몬테카를로 시행 수 1000

표 1. 실험 조건

모 델 평균 추론 시간 (ms) 파라미터 수 (개)

R-DNN 4.16 6,961

DAE-DNN 6.58 31,624

표 2. 평균 추론 시간 및 파라미터 수 비교

IV. 결론 및 연구 방향
본 논문은 전장 환경에서 적의 도래 각 추정에 대한 성능을 비교하기
위해, R-DNN과 DAE-DNN을 대상으로 실험을 수행하였다. 실험 결과,
동일한 SNR 조건에서 R-DNN이 상대적으로 더 빠른 추론 속도를
보였지만, 추정 정확성 측면에서 살펴보면 저 SNR 조건에서는
DAE-DNN이 상대적으로 안정적인 성능을 유지하는 것으로 나타났다.
즉, R-DNN은연산효율성측면에서유리한특성을보이며, DAE-DNN은
잡음에 대해 강건한 성능을 나타낸다. 이는 가변적인 전장 환경에서
상황에 따라 상호 보완적으로 두 모델을 운용할 수 있음을 보여준다.

이번 실험을 통해 전장 환경을 모사하기 위해 다양한 SNR으로 구성된
환경에서 R-DNN과 DAE-DNN의 성능을 비교하고, 상황에 따라 두
모델이 보완적으로 운용될 수 있음을 확인하였다. 본 실험에서는 특정
환경에서 두 모델을 동시에 운용하고 그 결과를 통해 각 모델의 성능을
비교했지만, 실제 운용 상황에서는 각 상황에 유리한 단일 추정 방식을
신속하게선택하여적용하는 것이필요하다. 이에 따라서 향후에는 신호
환경의 특성을자동으로분석하여적합한 모델을선택하거나, 두 구조를
통합하는 적응형 하이브리드 모델에 대해 연구한다면 실시간 전장 대응
능력을 향상할 수 있을 것이다.
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그림 2. SNR 변화에 따른 RMSE 비교


