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요 약  

 
    본 논문은 저궤도 위성 간 광 링크(O-ISL)의 고정밀 시간 동기화를 위해 고반복률의 전광 변조 

     광 주파수 빗(EO-COMB) 기반의 양방향 시간-주파수 전송(O-TWTFT) 시스템을 설계하고 성능을 

분석한다. 위성 간 상대 운동을 고려한 시간 차이 방정식을 사용하여 EO-COMB 의 기준 반복률 및  

오프셋 변화가 시간 동기 정확도에 미치는 영향을 시뮬레이션을 통해 분석한다. 

 

Ⅰ. 서 론  

저궤도 위성 통신은 전 지구적 커버리지를 통해 

차세대 통신 시스템으로 주목받고 있으며 서비스 수요 

증가에 따라 위성에 요구되는 기술 사양이 고도화되면서 

정밀 시간 동기화의 중요성이 대두되고 있다 [1]. 현재 

위성 시간 동기 기술에 사용되는 위성 항법 시스템 

(Global Navigation Satellite System, GNSS)이나 

마이크로웨이브 기반 기술들은 미래 위성 네트워크가 

요구하는 수 피코초(ps) 이하의 정밀도를 제공하는데 

한계가 있어 펨토초(fs) 수준의 시간 동기화가 가능한 

광학적 양방향 시간-주파수 전송((Optical Two-Way 

Time-Frequency Transfer, O-TWTFT) 방식이 

대안으로 부상하고 있다. 광 주파수 빗(Optical 

Frequency Comb, OFC)을 활용한 O-TWTFT 기술은 

도플러 효과로 인해 발생하는 양방향 전파 시간의 

비대칭성(non-reciprocity) 문제를 해결하고 초정밀 시간 

동기화의 가능성을 보여준다 [2, 3]. 

본 논문은 자체 제작한 고반복률(12.5GHz, 50GHz)의 

전광 방식 광 주파수 빗(Electro-Optic Frequency Comb, 

EO-COMB)이 저궤도 위성 간 광 링크(O-ISL) 환경에서 

어느 정도 시간 동기를 맞출 수 있는지 시뮬레이션을 

통해 분석한다. 위성의 상대 운동을 고려한 수정된 시간 

차이 방정식을 기반으로 OFC 의 반복률 및 반복률 

오프셋의 변화가 시간 동기 오차에 미치는 영향을 

정량적으로 평가하고 고반복률 EO-COMB 이 초정밀 

시간 동기 시스템의 적합성을 제시하고자 한다. 

Ⅱ. 본론 

(1) O-TWTFT 를 활용한 위성 시스템 모델 

 본 연구에서 제안하는 위성 간 초정밀 시간 동기 

시스템은 O-TWTFT 방식을 기반으로 한다. 그림 1 을 

참고하면 기준 시간 정보를 제공하는 Master 위성과 이 

시간을 수신하여 동기화되는 Remote 위성으로 구성된다.  

 

 
그림. 1 시스템 구조도. C:Optical Circulator; 

Master 위성에는 두 개의 EO-COMB 이 배치된다. 이 

위성에서 기준 클럭 역할을 하는 Comb A(반복률 𝑓𝑟̂ )와 

시간 정보를 전송하는 Comb X(반복률 𝑓𝑟̂ + ∆𝑓𝑟 )로 

구성된다. ∆𝑓𝑟은 반복률의 차이를 주는 오프셋 주파수로 

두 comb 의 펄스열 간 간섭 신호(interferogram)를 

생성하기 위한 핵심 역할을 한다. Remote 위성에는 

동기화 대상인 Comb B(반복률 𝑓𝑟̂ )가 위치한다. 마스터 

위성은 Comb X 를, 원격 위성은 Comb B 를 각각 상대편 

위성에 수신한다. 각 위성 간 시간 차이를 ∆𝑡𝐴𝐵라고 하면 

수식은 다음과 같이 정의된다 [3].  

∆𝑡𝐴𝐵 =  
1

2−𝑉0/𝑐
(𝛵𝑝𝑘 + 𝐶𝑉0,𝑇𝐵𝐴

+ 2∆𝑇𝑐𝑎𝑙_𝑒𝑓𝑓)      (1) 

기본적으로 ∆𝑡𝐴𝐵 는 각 콤들의 헤테로다인 측정을 통해 

얻어진 Interferogram 𝐼𝐴𝑋 ,  𝐼𝑋𝐵 , 𝐼𝐵𝑋의 정밀 시간 정보로

부터 계산된다. 



𝛵𝑝𝑘 =
∆𝑓𝑟

𝑓𝑟̂
2 [𝑘𝑝𝐴𝑋 − 𝑘𝑝𝐵𝑋 +

1

1 + ∆𝑓𝑟/𝑓𝑟̂

(𝑘𝑝𝐴𝑋 − 𝑘𝑝𝑋𝐵 − 𝑝𝑋𝐵 

+𝑝𝐴𝑋)] +
1

𝑓𝑟̂

[𝑝𝑋𝐵 + 𝑝𝐵𝑋 − 2𝑝𝐴𝑋]              (2) 

기본 시간차 항인 𝛵𝑝𝑘 는 측정된 인터페로그램의 정수 

주기 번호 p 와 p 와 관련된 샘플 타이밍 k 값들의 

조항으로 구성되며 양방향 시간차 정보를 나타낸다. 

𝐶𝑉0,𝑇𝐵𝐴
=

1

𝑓𝑟̂

𝑉0

𝑐
(𝑘𝑝𝑋𝐵 − 𝑘𝑝𝐵𝑋 + 𝑓𝑟̂𝑇𝐵→𝐴(𝑡𝑝𝐵𝑋))    (3) 

∆𝑇𝑐𝑎𝑙_𝑒𝑓𝑓 = ∆𝑇𝑐𝑎𝑙 + 𝑓𝑟̂∆𝑇𝑐𝑎𝑙
𝑉               (4) 

𝐶𝑉0,𝑇𝐵𝐴
는 위성 간 상대 접근 속도 𝑉0와 단방향 전파 시

간 𝑇𝐵→𝐴(𝑡𝑝𝐵𝑋)을 고려한 보정항으로 위성의 이동으로 인

해 발생하는 효과를 보상해준다. 교정 상수항 ∆𝑇𝑐𝑎𝑙_𝑒𝑓𝑓는 

위성 내부 경로에서 발생하는 시간 오프셋 ∆𝑇𝑐𝑎𝑙과 상대 

속도 𝑉 로 인해 발생한 지연을 ∆𝑇𝑐𝑎𝑙
𝑉 로 통해 보정한다. 

 

(2) 시뮬레이션 

 본 시뮬레이션은 고도 550km 을 사용하는 Starlink 

환경을 모사하여 동일 궤도면(Inter plane)을 공전하는 두 

저궤도 위성 간 650km ISL 환경을 가정하였다[4]. 위성 

간 상대 속도는 𝑉0 =  0.1 𝑚/𝑠 로 설정하고 교정 상수항 

∆𝑇𝑐𝑎𝑙_𝑒𝑓𝑓 = 0 으로 설정하였다. 본 연구실에서 제작한 

EO-COMB 의 반복률 𝑓𝑟̂은 비교를 위해 상대적으로 낮은 

12.5GHz 와 높은 50GHz 로 설정했다. 측정 업데이트율 
1

∆𝑓𝑟
과 타이밍 확대율 M =

𝑓𝑟̂

∆𝑓𝑟
을 결정하는 반복률 오프셋 

∆𝑓𝑟 은 타이밍 확대율 M 이 다음과 같은 집합 

M={400k,200k,100k,50k}을 이루도록 설정하였다.  

시뮬레이션은 크게 두 단계로 진행했다. ∆𝑡𝐴𝐵 를 

계산하기 위해서 측정된 인터페로그램으로부터 정수 

인덱스 p 와 샘플 타이밍 k 를 얻는 첫번째 단계와 

이로부터 얻은 변수 값들로 ∆𝑡𝐴𝐵 를 계산하고 분석하는 

두번째 단계로 나누어 진행했다. 

 
그림. 2 시뮬레이션 결과 그래프: ∆𝒕𝑨𝑩의 (a) 표준편차, (b) 평균 

그림 2. (a)의 ∆𝑡𝐴𝐵의 표준편차는 두 가지 반복률 모두 M

이 감소함에 따라(= ∆𝑓𝑟이 증가) 일관되게 감소하는 경향

을 보였다. 두 반복률 모두 M=400k 일 때 약 21.5 as 였

고 M=50k 일 때는 약 2.65 as 으로 크게 향상되었다. ∆𝑓𝑟

이 증가할수록 측정 업데이트율(
1

∆𝑓𝑟
)이 높아지고 단기적인 

안정도 측면에서 개선점을 보임을 확인했다. 이로 인해 

반복률의 크기보다는 M 자체가 단기 안정도에 큰 영향

을 미칠 수 있는 것을 나타낸다.  

 
M ∆𝑓𝑟 (𝑘𝐻𝑧) (𝑎) ∆𝑡𝐴𝐵표준편차 (as) (b) ∆𝑡𝐴𝐵평균 (ps) 

400k 31.25 125 21.752 21.488 44.136 1.338 

200k 62.5 250 10.785 10.735 13.237 16.71 

100k 125 500 5.381 5.351 43.373 9.823 

50k 250 1000 2.649 2.652 35.258 4.624 

표 1. 시뮬레이션 결과값: 12.5GHz(회색), 50GHz(파란색) 

 

 그림 2. (b)의 ∆𝑡𝐴𝐵의 평균은 상대적으로 고 반복률일 때 

더 작은 값으로 나타났다. 반복률이 50 GHz 일 때 

M=400k 환경에서 1.338 ps 결과를 보였으며 평균적으

로 수 피코초 수준의 결과를 보여줬다. 12.5 GHz 일 때는 

M=200k 환경에서 13.237 ps 결과를 보였으며 평균적으

로 약 40 ps 미만의 결과를 확인했다. 

Ⅲ. 결론  

본 논문은 LEO 위성 간 ISL 환경에서 반복률 12.5 GHz, 

50GHz 인 EO-COMB 을 활용하여 O-TWTFT 시스템의 

시간 동기 정확도를 시뮬레이션을 통해 분석했다. 기준 

반복률 𝑓𝑟̂ 과 반복률 오프셋 ∆𝑓𝑟  변화에 따른 결과를 

비교했을 때 ∆𝑓𝑟  증가 시 ∆𝑡𝐴𝐵 의 표준 편차가 수 

아토초(as) 수준까지 향상되고, 반복률 50GHz 일 때 

반복률 오프셋이 1 MHz 인 상황에서 시간 차이를 4.6 ps 

수준으로 가장 우수한 결과를 보여 고반복률의 EO-

COMB 이 초정밀 시간 동기 기술의 가능성을 보여줬다. 

하지만 고반복률을 사용하면 시간 정보를 전송하는 보조 

통신 채널 및 신호처리부의 성능 요구사항을 높이므로 

시스템 복잡도를 고려한 반복률 및 반복률 오프셋의 

최적의 설정이 중요하며 향후 후속 연구에서는 다른 

궤도면 환경과 각종 잡음을 고려하여 시스템 설계를 

진행하려고 한다. 
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