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요 약  

 
본 논문은 직교 주파수 분할 다중 접속(OFDM) 기반 디지털 시맨틱 통신을 위한 중요도 기반 부반송파 매핑(mapping) 

기법을 제안한다. 제안된 기법은 사전 학습된 비전 트랜스포머(Vision Transformer, ViT) 모델을 활용하여 이미지의 각 

패치에 대한 어텐션 점수를 추출하고, 이를 바탕으로 중요도가 높은 패치를 선별하여 이진 데이터로 변환한다. OFDM 

부반송파마다 서로 다른 채널 이득을 갖는다는 특성을 이용하여, 높은 어텐션 점수를 가지는 이미지 패치를 높은 채널 이득을 

갖는 부반송파에 매핑함으로써 중요한 시맨틱 정보를 효과적으로 전송한다. 모의 실험을 통해, 제안된 기법은 낮은 

신호대잡음비 환경에서도 기존 방식 대비 높은 분류 정확도를 유지함을 보인다. 

 

Ⅰ. 서 론  

인공지능(Artificial Intelligence, AI) 분야의 성장 및 

다양한 응용 분야에서의 성공에 힘입어, 기존의 Shannon 

통신 이론 기반의 통신 방식이 아닌 새로운 딥러닝 기반의 

정보 추출 및 전송 방식을 고려한 시맨틱 통신(Semantic 

Communications)이 큰 주목을 받고 있다[1]. 모든 

데이터에 대해 비트 단위의 오류를 줄이는 것에 집중한 

고전적인 통신 방식과 달리, 시맨틱 통신은 전송 

데이터에서 필수적인 정보 또는 과제에 직접적인 영향을 

미치는 정보를 추출하여, 과제 수행에 효과적인 통신을 

수행한다. 초창기의 시맨틱 통신 연구는 대부분 아날로그 

통신 방식을 고려해왔으나, 최근 표준 무선 통신 

시스템과의 호환성을 고려한 디지털 통신이 점차 큰 관심을 

받고 있다. 최근에는 직교 주파수 분할 다중 접속 

(Orthogonal Frequency Division Multiplexing, OFDM) 

기반 디지털 시맨틱 통신을 위해 시맨틱 정보의 중요도를 

고려하여 재정렬하는 방식이 효과적으로 동작할 수 있음이 

보고되었다 [1]. 

본 논문에서는 사전 학습된 비전 트랜스포머 (Vision 

Transformer, ViT) [2]를 활용하여 무선 이미지 전송 

시스템에서 각 이미지 패치의 중요도를 추정하고, 중요도를 

기반으로 시맨틱 정보 전달에 효과적인 부반송파 매핑 

방법을 제시한다. 특히, 높은 채널 이득을 가지는 부반송파 

채널에 어텐션 점수가 높은 패치를 매핑하여 주어진 채널 

환경에서 효과적으로 시맨틱 정보를 전달할 수 있는 기법을 

제안하였다. 실험 결과, 본 기법은 다양한 SNR 환경에서 

기존의 랜덤 매핑 및 역순 매핑 대비 전송 후 이미지 분류 

정확도를 크게 향상시키는 것으로 나타났다. 제안된 방법은 

디지털 시맨틱 통신 시스템의 설계에 있어 어텐션 기반 

중요도 추출 및 부반송파 매핑 전략의 우수성 및 활용 

가능성을 입증한다. 

 

 

Ⅱ. 본 론  

 
그림 1. 디지털 시맨틱 통신을 적용한 OFDM 통신 

시스템 전체 구조도 

 

그림 1 은 제안하는 OFDM 을 활용한 디지털 시맨틱 

통신 시스템의 전체 구조를 나타낸다. OFDM 에서 임의의 

𝑘 번째 부반송파에 대한 수신 신호는 아래 수식으로 

표현된다. 

𝑌𝑘 = 𝐻𝑘𝑋𝑘 + 𝑍𝑘 (1) 

여기서 𝐻𝑘은 𝑘번째 부반송파의 채널 계수, 𝑋𝑘은 전송 심볼, 

𝑍𝑘~𝐶𝑁(0, 𝑁0), 은 가우시안 잡음, 𝑁0는 잡음 신호의 분산을 

나타낸다. 수신기에서 각 부반송파 채널을 정확히 

추정했다는 가정하에 수신 신호에 채널 등화를 적용하면, 

전송 심볼에 대한 추정치를 다음과 같이 얻을 수 있다.  

𝑋̂𝑘 =
𝐻𝑘

∗

|𝐻𝑘|2 𝑌𝑘 = 𝑋𝑘 +
𝐻𝑘

∗

|𝐻𝑘|2 𝑍𝑘 (2) 

위 수식에서 확인할 수 있듯이, 전송 심볼에 대한 수신 

성능은 각 OFDM 부반송파에서 형성되는 신호대 

잡음비(Signal-to-Noise Ratio, SNR)에 의해 결정된다. 

𝑘번째 부반송파의 SNR 은 다음과 같이 계산된다. 



 

𝑆𝑁𝑅𝑘 =
|𝐻𝑘|2

𝑁0
 (3) 

만약 k 번째 부반송파의 SNR 이 낮을 경우 𝑋̂𝑘으로부터 𝑋𝑘

을 정확히 복원하기 어려워지며, 수신 이미지의 품질이 

저하된다. 주파수 선택적 채널의 평균적인 성능을 나타내는 

기준값으로, 평균 SNR 을 활용한다. 각 부반송파 채널 이득 

|𝐻𝑘|2을 기반으로 계산된 평균 SNR 은 다음과 같다. 

𝑆𝑁𝑅𝑎𝑣𝑔 =  
1

𝐾𝑁0
∑|𝐻𝑘|2

𝐾

𝑘=1

 (4) 

본 연구에서는 평균 SNR 이 낮은 환경에서도 안정적인 

이미지 전송 성능을 확보하기 위해, ViT 의 어텐션 점수를 

활용한 중요도-기반 부반송파 매핑 기법을 제안한다. 

제안된 기법에서는 입력 이미지의 각 패치가 과제 수행에 

기여하는 중요도를 산출하기 위해, 사전 학습된 ViT 의 

다중 레이어, 다중 헤드 자기 어텐션(Multi-Head Self-

Attention, MSA) 메커니즘을 활용한다 [2]. 전체 레이어 

수를 𝐿, 헤드 수를 𝐻, 토큰 개수를 𝑁 이라 하자. 여기서 𝑁은 

클래스 토큰(class token, CLS) 1 개와 이미지 패치 수의 

합으로 구성된다. 𝑙번째 레이어의 ℎ번째 헤드에서, CLS 의 

쿼리 벡터 𝐪cls,𝑚
(𝑙)

 ∈  ℝ1×𝑑 와 이미지 패치의 키 벡터 𝐤p,m
(𝑙)

 ∈

 ℝ(𝑁−1)×𝑑를 기반으로 계산된 어텐션 점수 𝒂̃ℎ
(𝑙)는 다음과 

같다. 

 𝒂̃ℎ
(𝑙) = Softmax (

𝐪cls,𝑚
(𝑙)

(𝐤p,m
(𝑙)

)
T

√𝑑
) ∈  ℝ1×(𝑁−1) (5) 

위 식은 CLS 가 각 패치 토큰에 주의를 얼마나 

집중하는지를 나타내며, 이때 Softmax(⋅)는 CLS 를 제외한 

패치 토큰들에 대해 적용되어, CLS 에서 CLS 로의 자기 

어텐션은 고려되지 않는다. 이후 모든 레이어와 헤드에 

대해 계산된 어텐션 값을 평균내면 최종 어텐션 점수 𝒂 를 

다음과 같이 정의할 수 있다. 

 𝒂 =
1

𝐿𝐻
∑ ∑ 𝒂̃ℎ

(𝑙)

𝐻

ℎ=1

𝐿

𝑙=1

∈  ℝ1×(𝑁−1) (6) 

이때 𝑎는 특정 이미지에 대한 어텐션 기반 패치 중요도 

벡터를 의미한다.  

제안된 기법에서는 OFDM 부반송파마다 서로 다른 

SNR 이 얻어진다는 점을 활용하여, 이미지 패치의 어텐션 

점수가 높을 수록 더 높은 SNR 을 갅는 부반송파를 

매핑한다. 이를 통해, 낮은 SNR 환경에서도 높은 이미지 

분류 정확도를 달성할 수 있음을 보이고자 한다. 

 

   
 

그림 2. ViT 및 이미지 처리 전, 후 

그림 2 는 이미지 처리 과정을 보여준다. 왼쪽부터 

차례대로 원본 이미지와 원본 이미지에서 추출한 어텐션 

점수를 히트맵으로 시각화하였고, 이를 바탕으로 이미지 

하나당 총 196 개의 패치 중에서 어텐션 점수가 높은 

128 개만 취하여 OFDM 송수신한 이미지이다. 어텐션 

점수가 특정 임계 값을 넘지 않는 68 개의 패치들에 대한 

정보는 과제 수행에 미치는 영향이 적기에, 송신 효율을 

높이기 위해 전송하지 않는다. 

모의 실험에서는 Imagenet100 데이터셋을 사용하여 

제안된 어텐션 점수 기반 이미지 전송 기법에 대한 성능 

평가를 진행한다. 다중 경로 채널 탭 개수 𝐿 = 10, 시간-축 

채널 함수 ℎ𝑛~𝐶𝑁(0,
1

𝐿
), 그리고 부반송파 𝐾 = 2048개를 

사용했다.  

이에 따라 𝐻𝑘~𝐶𝑁(0,1) 의 레일리 페이딩(Rayleigh 

fading) 분포를 따른다.  제안된 기법과의 성능 비교를 위해 

이미지 패치의 어텐션 점수와 무관하게 랜덤한 채널을 

매핑하는 방식과 어텐션 점수가 높을수록 작은 |𝐻𝑘| 를 

매핑하는 방식을 고려한다.  

 

그림 3 은 평균 수신 SNR 변화에 따른 제안 기법, 임의 

매핑 기법, 반대 매핑의 분류 정확도를 비교한 결과를 

나타낸다. ViT 모델 파라미터를 실험 데이터셋에 맞추어 

미세 조정(fine-tuning)했을 때 최종 분류 정확도가 약 

81%임을 알 수 있다. 추가로, 𝑆𝑁𝑅𝑎𝑣𝑔이 25dB 이상일 때는 

세 기법 간 성능 차이가 거의 없으나, 15dB 이하의 낮은 

𝑆𝑁𝑅𝑎𝑣𝑔환경에서는 제안 기법이 다른 두 방법보다 우수한 

성능을 나타낸다. 특히, 𝑆𝑁𝑅𝑎𝑣𝑔 = 1dB 의 매우 열악한 채널 

환경에서도 제안 기법은 45% 이상의 정확도를 

기록하였으며, 이는 제안 기법이 낮은 SNR 에서도 

상대적으로 안정적인 통신 성능을 제공함을 시사한다. 

Ⅲ. 결 론  

본 연구에서는 OFDM 시맨틱 통신 시스템을 위해 새로운 

ViT 기반 부반송파 매핑 기법을 제안하였다. 제안된 

프레임워크는 사전 학습된 ViT 모델을 활용하여 이미지 

패치의 중요도에 따라 높은 채널 이득을 가지는 OFDM 

부반송파에 중요도가 높은 패치를 매핑하는 것을 핵심 

아이디어로 한다. 모의 실험 결과, 본 기법은 낮은 SNR 

환경에서도 기존 방식에 비해 높은 분류 정확도를 유지하며, 

보다 안정적인 시맨틱 통신 성능을 보장할 수 있음을 

확인하였다.  
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그림 3. 부반송파 매핑 기법에 따른 이미지 분류 정확도 비교 


