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Control OFF 20.65 10.73
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Gray ON Both Moving 0.343
Gray ON Sun Static 0.251
Gray ON Shade Static 0.255
Gray OFF Sun Static 0.429
White ON Both Moving 0.286
White ON Sun Static 0.285
White ON Shade Static 0.197
White OFF Sun Static 0.748
(a) side street
Car f;g:h Lighting Motion l\ggig
Gray ON Sun Static 0.509
Blue ON Shade Static 0.208
White ON Sun Static 0.746
(b) car park
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