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본 논문에서는 지연된 거리 정보만을 사용하여 이동단말의 미래 위치를 예측하는 대규모 언어 모델 기반의 측  
위 방식을 제안한다 사전에 학습된 언어 모델의 높은 일반화 능력을 활용하면 단말 이동성에 대한 수학 모델 . , 
없이 실시간으로 수집된 적은 양의 데이터만으로도 단말의 위치를 정확하게 추정할 수 있다 모의 실험을 통해  . 
제안하는 기법의 성능을 확인하고 종래의 인공지능 기반 추론 방식과 성능을 비교하여 유효성을 입증한다, . 

   

서 론. Ⅰ
이동단말의 위치를 추정하는 측위 기술은 이동통신 시스템에서 매우 

중요한 기술이다 대표적으로 거리 정보를 활용하는 삼변측량과 각도 정. 
보를 기반으로 하는 삼각측량 방식이 존재한다 최근에는 거리와 각도 정. 
보를 모두 사용하는 최적화 알고리즘 기반 측위 기법 과 인공지능 기반[1]
의 측위 체계 가 연구된 바 있다 이러한 방식들은 현재까지 측정한 거[2] . 
리 각도 정보를 기반으로 현시점 사용자 위치를 예측한다/ . 

등의 초고속 이동단말의 경우 측위 과정 Urban air mobility (UAM) 
에서 단말의 위치가 이미 변경될 수 있다 따라서 측위 알고리즘이 사용. , 
하는 입력은 지연된 거리 정보이며 과거 정보만을 기반으로 위치를 추정, 
해야 하는 고난도 측위 문제를 해결해야 한다 단말 이동성에 대한 수학적. 
인 동적 모델이 존재하는 경우 칼만 필터 등의 전통적인 신호처리 알고리, 
즘을 사용할 수 있다 하지만 현실적인 이동통신 시스템에서 단말의 동적 . , 
모델을 획득하는 것은 불가능하다 인공지능 측위 방법은 이동성 모델이 . 
필요 없으나 훈련 데이터와 상이한 테스트 환경에서는 성능이 열화된다, . 
본 논문에서는 을 기반으로 지연된 거large language model (LLM)

리 정보만을 사용하는 새로운 측위 방식을 제안한다 방대한 데이터로 학. 
습된 은 높은 일반화 능력을 지니고 있어 새로운 입력에 대해서도 적LLM
절한 응답을 출력할 수 있다 새로운 환경에 대한 예시를 프롬프트에 제시. 
하는 기법 은 별도의 재학습 과정이 없어in-context learning (ICL) [3]
도 이 새로운 환경에 빠르게 적응하도록 한다 이러한 기능을 활용하LLM . 
여 이동단말의 지연 거리 정보만을 기반으로 미래 위치를 예측하는 측위 
기법을 구축한다 모의실험을 통해 제안하는 기법의 유효성을 평가한다. .

이동단말의 위치를 삼변측량법으로 추정하기 위해 대의 기지국이 존
재하는 통신 시스템을 상정한다 기지국 . 는 파일럿 신호의 received 

를 기반으로 이동단말과의 거리를 추정한다 단말의 signal strength (RSS) . 
빠른 이동성 때문에 시간    ⋯에서 기지국 는 지연된 거리 
정보 를 획득한다 추정 과정의 불확실성을 포함하면 기지국 . 의 

시간 의 관찰값은     로 주어지며 , 는 평균

이 분산이 0, 인 가우시안 추정 잡음을 뜻한다. 

각 기지국 는 개의 과거 관찰값들 
      ∀ ⋯을 사용하여 현재 

단말의 거리 을 다음과 같이 예측한다:

       ℒ   .            (1)

이때 ℒ ⋅은 기지국 의 거리 예측기를 의미한다 총 . 대의 기지국에

서 추정한 거리 정보들   ∀을 기반으로 삼변측량 기법을 통해 

현재 사용자의 차원 위치 벡터 2 x의 추정값  을 도출한다 .
  

기반 측위 방법. LLM Ⅲ
본 논문에서는 각 기지국의 거리 예측기   ℒ ⋅를 으로 설계하여 LLM

임의의 측위 환경에 대한 확장성을 달성하고자 한다 상용 의 추론 능. LLM
력을 극대화하기 위해 프롬프트 방식을 사용한다ICL [3]. 
일반적으로 예시가 많아질수록 의 추론 성능이 향상된다 그  ICL LLM . 
러나 시간 에서 기지국 가 사용할 수 있는 정보는 지연 거리 관찰값들 
   에 한정되어 임의로 데이터 수를 늘릴 수 없다 이를 위. 

해 시간 윈도우로 시계열 관찰값   을 분할하여 

복수의 예제 데이터 집합을 구성한다 구체적으로 시간 ICL . , 에서 번째 

예제 
  


은 입력 

과 레이블 


을 포함하도록 다음과 같이 설계한다.

          
   ⋯ 

   

 (2)

여기서   이며 시간 , 에서 기지국 는 총 

개의 예제들 ICL   ∀ ⋯ 을 LLM

에 입력한다 최종 예측에 필요한 지연 정보 입력 . 을 제공하고 거

리 예측값을 출력하도록 지시한다. 

모의실험 결과IV. 
모의실험을 통해 제안하는 기반 측위 방식의 유효성을 검증한다  LLM . 
반경이 인 원형 셀에서 이동단말이 무작위로 생성된 초기 위치 500m



x 에서   초까지 초 단위로 위치를 변경한다 총 1 .  대의 
기지국이 원형 셀 위에 정삼각형 형태로 분포해 있고 단말은 , 

랜덤 프로세스 를 기반으로 이동하여 시간 Gauss-Markov [4] 에서의 속도
를 시간 의 속도를 기반으로 변경한다 제안하는 기반 측위 방법. LLM 
의 확장성을 검증하기 위해 단말이 초까지는 동일한 패턴으로 이동하다120 
가 그 후 방향을   내에서 무작위로 변경한다.

기법의 측위 오차를 평가하기 위해 다음의   LLM mean absolute error 
지표를 모의실험으로 계산한다(MAE) .

          xx  .                 (3)
는 총 개의 독립적인 테스트 이동 경로 데이터에 대해 평가한MAE 1,000

다 또한 정량적인 비교를 위해 다음의 세 가지 방법을 고려한다. , .

 시간 Ideal: 에서 기지국이 지연시간 없이 현재의 거리 정보 
의 추

정값을 직접 관찰할 수 있는 이상적인 상황을 가정하여 제안하는 기법
의 성능 하한을 도출한다MAE .

 두 개의 계층 및 개의 은닉 뉴Multi-layer perceptron (MLP): 128
런으로 구성된 를 지도학습으로 훈련한다MLP .

 시계열 데이터에 적합한 Gated-Recurrent Units (GRU)[5]: GRU
를 지도학습 한다 해당 모델은 두 개의 계층과 각 개의 은. GRU 128
닉 뉴런 그리고 단일 완전연결계층을 포함한다, .

기존 인공지능 기반 측위 기법의 한계를 파악하기 위해 와 의 MLP GRU
훈련 데이터는 초까지의 경로들로만 구성한다120 .

그림 1 다양한 측위 기법들의 시간에 대한 성능 MAE 

그림 은 다양한 측위 방법들의 평균 성능을 시간에 따라 도시한   1 MAE 
결과이다 예상했던 대로 기법의 측위 성능이 가장 좋은 것을 알 수 . ideal 
있다 제안하는 기법은 약 의 성능을 보이다가 단말의 이. LLM 6 m MAE 
동 경로가 크게 변화하는 초 부근에서 큰 오차를 보인다 그러나 변경120 . 
된 이동성을 빠르게 파악하여 초 내에 다시 수준의 성능을 20 6 m MAE 
달성한다 반면 와 는 대비 큰 오차를 보인다 초기에 약 . , MLP GRU LLM . 7 
의 성능을 보이지만 급격한 방향 전이가 발생하는 초를 기점으m MAE , 120
로 가 급증하며 경로를 정교하게 추적하지 못한다 이는 와 MAE . MLP GRU
는 급격한 환경 변화가 발생하는 초 이후 데이터를 학습하지 못하여 과120 
적합 되므로 발생하는 현상이다 현실적인 이동통신 시스템에서는 단말 이. 
동성의 무작위성이 더욱 커질 것이므로 인공지능 측위 모델을 모든 가능한 , 
환경에서 훈련하는 것은 현실적으로 불가능하다 그에 비해 기법은 추. LLM 
가 학습이 필요 없이 프롬프트에 제공되는 예제만을 이용하여 새로운 ICL 
환경에 빠르게 적응이 가능하므로 구현 관점에서 큰 장점을 갖는다. 
그림 는 단말의 실제 이동 경로와 로 예측한 추정   2 LLM, MLP, GRU
경로의 예시를 도시한 결과이다 그림 와 그림 의 예제들에서 . 2(a) 2(b)
이동성에 변화가 없는 초기 초까지는 두 기법 모두 안정적인 예측 경120
로를 도출한다 변화가 발생한 후에도 제안하는 기법은 실제 경로와 . LLM 

유사한 위치를 예측하는 반면에 와 방식은 크게 동떨어진 경, MLP GRU 
로를 출력한다 이들은 학습된 경로 패턴에 대해서는 준수한 측위 성능을 . 
보이나 새로운 환경에서는 낮은 일반화 능력으로 오차가 크게 발산한다, . 
이러한 단점을 기반 측위 방법으로 해결하여 큰 변화가 발생해도 빠LLM 
르게 적응하여 좋은 위치 추정 결과를 도출함을 확인할 수 있다 이러한 . 
모의실험들은 이동 경로가 실시간으로 변화하는 실제 무선 통신 환경에서 
사전 정의된 학습만으로는 한계가 있으며 제안하는 기반 접근이 효, LLM 
과적인 대안이 될 수 있음을 시사한다.

 

(a) (b)

 
결론V. 

  본 연구는 의 기능을 활용한 측위 기법을 소개하였다 제안하LLM ICL . 
는 기법은 이동성에 대한 수학적 모델 없이 지연된 거리 관찰 정보만을 
활용하여 단말의 미래 위치를 높은 정확도로 예측할 수 있다 특히 . LLM 
기반 측위 기법은 추가 학습이나 데이터를 요구하지 않으므로 임의의 이
동통신 환경에서 미세조정 없이 바로 적용할 수 있을 것으로 예상된다. 
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