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요 약  

 

대규모 다중 입력 다중 출력(MIMO) 시스템을 활용하기 위해서는 정확한 채널 상태 정보(CSI)의 획득이 필수적이다. 본 

논문에서는 동적 무선 환경에 적응적인 대규모 언어 모델(LLM) 기반 CSI 피드백 기법을 제안한다. 구체적으로, 기존 CSI 

피드백 기법이 겪는 일반화 및 사용자 이동성 문제를 해결하기 위해 LLM 의 언어 이해 및 일반화 능력을 활용하여, 무선 

구성 프롬프트(WCP)를 통해 무선 시나리오와 CSI 피드백을 위한 상세한 과정을 제공한다. WCP 를 통해 LLM 은 입력 

특성, 시나리오 세부 정보 및 단계별 논리를 파악하여 정확한 CSI 복원을 가능케 한다. 시뮬레이션 결과, 본 기법이 기존 

CSI 피드백 기법보다 NMSE 성능에서 2.5 dB 이상의 개선을 달성하였다.   

 

Ⅰ. 서 론  

대규모 언어 모델(LLM)은 다양한 산업 분야에서 

혁신적인 기술로 부상했으며, 기존의 딥러닝 모델과 달리 

최소한의 예시만으로 다양한 질문에 답하고 여러 작업을 

수행할 수 있다. 이러한 문제 해결 능력을 활용하여 

LLM 은 무선 통신 문제 해결, 특히 채널 상태 

정보(CSI)를 얻는 데 유용한 수단이 될 수 있다. 기존의 

코드북 기반 CSI 피드백 기술은 양자화 오류가 심하며, 

채널의 변화를 반영하지 못하는 문제가 있다. 이를 

해결하기 위해 딥러닝 기반 CSI 피드백 기술이 

제안되었지만, 채널의 빠른 변화에 대한 적응력이 

부족하여 CSI 피드백 정확도가 크게 떨어진다. 

본 연구에서는 LLM 의 일반화 능력과 언어 이해 능력을 

활용하여 채널의 변화가 빠른 상황에서도 CSI 피드백 

성능을 향상시킨다. 본 연구에서 제안하는 LLM 기반 

CSI 피드백 (LLM-CF)는 CSI 피드백을 위한 프롬프트를 

통하여 LLM 에 무선 시나리오에 대한 정보와 CSI 

피드백을 위한 상세한 절차를 입력함으로써 동적인 무선 

환경에 적응적으로 CSI 피드백을 수행할 수 있게 한다. 

시뮬레이션 결과, 제안하는 기법이 기존 CSI 피드백 

기술 대비 normalized mean square error (NMSE) 

측면에서 2.5 dB 이상 이득을 얻었다. 

 

Ⅱ. 본론  

본 논문에서는 다운링크 FDD MIMO 시스템을 고려하며, 

기지국(BS)과 사용자 장치(UE)는 각각 𝑁𝑡  개의 송신 

안테나와 1개의 수신 안테나를 갖춘다. 채널 모델은 다음 

식과 같이 𝐿개의 전파 경로를 갖는 기하학적 다중경로 

모델을 따른다. 
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로 표현된다. 

본 연구에서 제안하는 LLM-CF 는 무선 구성 프롬프트 

(Wireless Configuration Prompt, WCP)를 통하여 입력 

채널의 특성, 시나리오 세부 정보 (피드백 주기, 환경 

유형 등), 그리고 chain of thought(CoT) 기법을 통한 

단계별 논리 지침을 제공한다. 이러한 정보를 활용하여 

LLM-CF 는 현재 환경에 맞춰 CSI 를 적응적으로 

재구성할 수 있다. 또한, FDD 의 angular 

reciprocity 특성을 이용하여, 업링크 채널 정보를 통해 

CSI 예측의 정확도를 높인다. 

기존 LLM 은 주로 단어와 같은 토큰을 풀력하는 반면, 

채널 생성을 위해서는 채널 행렬 형태의 출력이 

필요하다. 본 연구에서는 채널 생성 헤드(channel 

generative head)를 설계하여 다운링크 채널을 

재구성한다. 구체적으로, 채널 생성 헤드는 LLM 의 

출력을 받아 다운링크 채널과 업링크 채널 사이의 계수 

행렬 𝐂 를 찾고, 이를 업링크 채널과 곱해 최종적으로 

다운링크 채널을 생성한다. 이러한 접근 방식은 angular 



reciprocity 를 이용하여 채널 생성 과정을 간소화한다. 

채널 생성 헤드는 완전 연결 계층 (fully connected 

layer)로 구현되고, 모델 파라미터는 실제 다운링크 

채널과 예측한 채널 사이의 normalized mean square 

error (NMSE) 손실함수를 최소화하도록 설계하였으며, 

손실함수의 식은 다음과 같다. 
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시뮬레이션 결과 LLM-CF 는 기존의 CSI 피드백 

기법들보다 NMSE 측면에서 뛰어난 성능을 보여준다. 

예를 들어, SNR 이 30 dB 일 때 LLM-CF 는 기준 딥러닝 

기반 기법 대비 2.5 dB 이상의 성능 향상을 달성하였다. 

이는 피드백 주기 Δt가 10 ms 일 때와 20 ms 일 때 각각 

큰 성능 향상을 보였으며, 이는 LLM-CF 의 우수한 

일반화 능력을 보여준다. 

 

 

Fig 1. SNR 에 따른 채널 NMSE 그래프 

Ⅲ. 결론  

본 논문에서는 mmWave 대규모 MIMO 시스템을 위한 

LLM 기반 CSI 피드백 기법을 제안하였다. 이 기법을 

통해 LLM 의 문제해결 능력을 활용하여 다양한 통신 

시나리오에서 높은 CSI 피드백 정확도를 달성하였다. 

LLM 이 다운링크 CSI 를 논리적인 흐름에 따라 

재구성하도록 WCP 를 설계했으며, 이를 통해 CSI 

피드백의 정확도가 더욱 향상되었다. 시뮬레이션 결과, 

제안한 LLM-CF 기법이 기존 CSI 피드백 기법들보다 

상당한 CSI 피드백 성능 이득을 얻음을 확인하였다. 
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