

옥토맵과 포인트 클라우드를 활용한 물체와 구조물의 효율적인 3D 공간 모델링 시스템 제안

나우엽, 신수용*

국립금오공과대학교

2025210278@kumoh.ac.kr, *wdragon@kumoh.ac.kr

Proposing an Efficient 3D Spatial Modeling System for Objects and Structures Using Octomap and Point Clouds

Woo Yeob Na, Soo Young Shin*

Kumoh National Institute of Technology.

요약

본 논문은 3D 공간 모델링을 위한 새로운 시스템을 제안한다. 기존의 3D 옥토맵 기술은 큰 구조물들(벽, 천장, 바닥 등)의 모델링에서는 강점을 보이나, 소형 객체들과 동적 객체들에는 한계가 있다. 본 연구에서는 큰 구조물에 대해서는 옥토맵을 사용하여 모델링하고, 소형 객체들과 동적 객체들에는 포인트 클라우드를 활용한다. 이 두 개의 기술을 결합하여 메모리 사용 효율성과 정확한 모델링을 동시에 달성할 수 있음을 제시한다. 제안된 시스템은 객체와 구조물을 구분하여 최적화된 방식으로 처리하며, 향후 연구를 통해 이 시스템의 성능을 검증할 계획이다.

I. 서 론

본 논문에서는 3D 공간 모델링을 위한 새로운 시스템을 제안한다. 기존의 3D 옥토맵은 공간을 격자 형태로 나누어 데이터를 저장하기 때문에, 큰 구조물(벽, 천장, 바닥 등)에서는 모델링이 효율적이지만, 그림 1과 같이 작은 물체나 복잡한 형태의 객체는 저해상도로 처리되어 정확히 표현하는 데 어려움이 있다. 이러한 문제는 대규모 환경에서는 문제가 되지 않지만, 실시간 환경에서 소형 객체의 정확한 모델링을 요구하는 상황에서는 성능에 한계를 초래한다.

본 연구에서는 이러한 한계를 극복하기 위해, 옥토맵과 포인트 클라우드를 결합한 효율적인 3D 모델링 시스템을 제안하고자 한다. 옥토맵은 큰 구조물의 모델링에 대해 뛰어난 성능을 보이며[2], 포인트 클라우드는 소형 물체를 표현하는데에 뛰어난 성능을 보인다[3]. 두 기술을 결합함으로써 정확한 모델링과 효율적인 메모리 사용을 동시에 달성할 수 있을 것으로 기대된다.

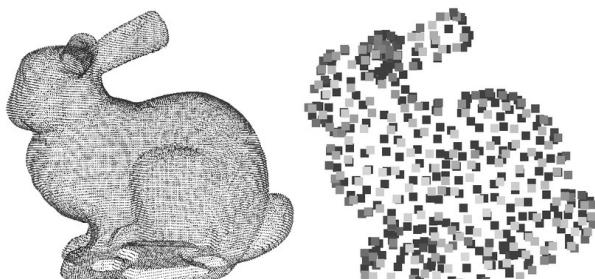


그림 1. 포인트 클라우드한 토끼와 voxel을 진행한 토끼 예시

II. 본론

그림2은 본 연구에서 제안된 시스템 구조를 나타낸다. 이 시스템은 LIDAR 센서에서 데이터를 획득한 뒤 포인트 클라우드 생성을 진행 후 유 효한 데이터만을 전처리 및 Statistical Outlier Removal Filter[4]를 사용하여 각 포인트의 이웃 점들과의 거리를 계산하여 노이즈를 제거 과정을 진행한다. 이 과정에서 구조물과 소형 객체를 구분하여 구조물은 Point Cloud to Voxel Mapping 기법을 사용하여 복셀화하고 옥토맵으로 변환, 소형 객체는 Euclidean Clustering 기법[5]을 사용하여 밀집된 포인트들을 물체 단위로 클러스터링하여 복셀로 변환되지 않고 포인트 클라우드 형태로 저장된다. 이렇게 생성된 옥토맵과 포인트 클라우드를 좌표계 정합 기술을 사용하여, 두 데이터 소스간의 좌표계를 일관성 있게 맞추고, 실시간 동기화하여 3D환경 모델링을 진행한다. 이와 같은 과정을 거쳐 큰 구조물들(천장, 바닥, 기둥 등)은 복셀로, 작은 개체들은 포인트 클라우드로 표현된 화면을 볼 수 있을 것으로 기대된다.

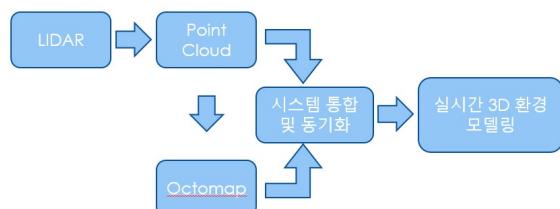


그림 2. 시스템 구성도

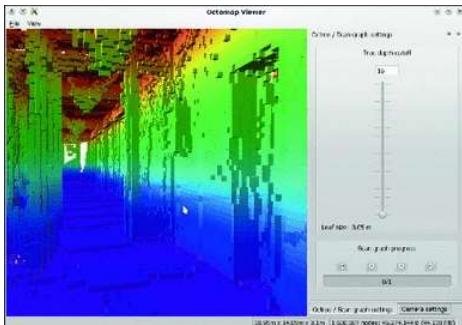


그림 3. 옥토맵 구현 예시

III. 결론

본 논문에서는 옥토맵과 포인트 클라우드를 결합한 3D 모델링 시스템을 제안한다. 이 시스템은 큰 구조물과 소형 물체를 효율적으로 처리하여 정확하며 효율적인 3D 모델링을 가능하게 한다. 옥토맵은 큰 구조물을 모델링하고, 포인트 클라우드는 소형물체를 표현한다. 이 시스템은 자율 주행, 로봇 탐사, 드론 내비게이션 등 다양한 분야에 응용될 수 있으며, 향후 연구를 통해 실제 성능을 검증하고 개선할 예정이다.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2025-RS-2024-00437190) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation, 50%) This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2018R1A6A1A03024003, 50%)

참 고 문 헌

- [1] HORNUNG, Armin, et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees. *Autonomous robots*, 2013, 34: 189–206.
- [2] HAN, Xian-Feng, et al. A review of algorithms for filtering the 3D point cloud. *Signal Processing: Image Communication*, 2017, 57: 103–112.
- [3] CAO, Chao; PREDA, Marius; ZAHARIA, Titus. 3D point cloud compression: A survey. In: *Proceedings of the 24th International Conference on 3D Web Technology*. 2019. p. 1–9.
- [4] BALTA, Haris, et al. Fast statistical outlier removal based method for large 3D point clouds of outdoor environments. *IFAC-PapersOnLine*, 2018, 51.22: 348–353.
- [5] GAMAL, Ahmad, et al. Automatic LIDAR building

segmentation based on DGCNN and euclidean clustering. *Journal of Big Data*, 2020, 7: 1–18.