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Abstract

신소재 개발 과정의 자동화를 위해, 조성–공정–물성 (Composition–Processing–Property, C-P-P) 관계를 LLM
(Large Language Model) 기반으로 추론하고, RAG (Retrieval-Augmented Generation) 기반 문헌 검색과 SHAP
(SHapley Additive exPlanations)기반해석모듈을통합한기술구조를제안한다.제안시스템은자연어질의로부터
문헌 기반 조성 정보를 검색하고, 실험 데이터 기반 회귀 예측 및 해석을 통해 설명 가능한 합금 조합 추천 및 물성
예측을 수행한다. 특히 SHAP 분석 결과를 LLM 프롬프트에 삽입함으로써 정량적 예측과 자연어 해석을 연계한

설명형 실험 설계가 가능하며, AIMI (AI for Material Innovation) 플랫폼 내 실제 구현하여 기술의 실효성과 확장
가능성을 확인한다.

I. Introduction

반도체 배선 소재나 고체 전해질 등의 신소재 개발은 조성,
공정, 물성 간에서 최적 조합을 찾는 것이며, 기존의 반복적

인 실험은 높은 비용과 시간이 소요된다. 기존의 기계학습 기
반 예측 모델의 대부분은 정형 데이터 기반이며, 도메인 지식
통합이나 해석 가능성에서 한계를 갖는다. 최근 LLM (Large
Language Model)은 자연어 기반 질의응답 및 문헌 추론 기
능을 바탕으로 실험 로그, 조성 파일 등 비정형 데이터를 함께
보조하여 처리하는 등 재료 과학 분야에서 새로운 도구로 주

목받고 있다. 선행 연구 중 MatSciBERT는 텍스트의 임베딩
및 유사 질의 응답을 시도하였다 [1]. 그러나 해당 연구는 문헌
요약이나 개념 수준의 탐색에 국한되며, 실험 데이터 기반 수치
예측, 실험 조건 생성을 통합하는 시스템은 전무하다. 본 연구
는 이를 해결하기 위해, LLM 중심의 질의응답 구조에 RAG
(Retrieval-Augmented Generation) 기반 문헌 검색과 SHAP
(SHapley Additive exPlanations) [2] 기반 회귀 예측 및 해석
을 통합한 통합형 추론 시스템 아키텍처 설계를 목표로 한다.

II. Methodology
LLM 기반 신소재 추론 구조는 다음 세 가지 주요 구성 요

소로 이루어진다.

• 첫째, C-P-P (Composition–Processing–Property) 기반
질의응답구조는사용자의자연어질의를바탕으로 RAG
구조를 활용하여 논문 ·특허 등에서 구축된 벡터 데이터
베이스로부터관련사례를검색한다.검색된문헌은 LLM
프롬프트의 컨텍스트로 삽입되며, LLM은 이를 바탕으로
조성–공정–물성 관계를 반영한 응답을 생성한다.

• 둘째, 수치 예측과 해석을 위해 SHAP 기반 회귀 분석 모
듈을 구성한다. 실험 데이터를 기반으로 학습된 회귀 모
델은 조성 및 공정 파라미터를 입력으로 하여 물성 값을

예측하고, SHAP 분석을 통해 각 특징 (feature)의 기여
도를 도출한다. 이 결과는 JSON 형태로 정리되어 LLM
프롬프트에 삽입되며, LLM은 이를 자연어 해석으로 변
환해 부연설명을 생성할 수 있다.

• 셋째, 최종 프롬프트는 사용자 질의, 문헌 정보, 수치 해석
결과를통합하여구성되며, LLM은이복합정보를바탕으

로 조성 추천, 조건 생성, 해석형 응답을 동시에 수행한다.
Few-shot 예시와 함께 LangChain Tool 및 SHAP API
연계를 통하여 멀티모달 추론도 가능하도록 설계한다.

III. Conclusion

본 연구는 C–P–P 추론을 중심으로, LLM 기반 질의응답 시
스템에 RAG를 기반한 지식 검색 과 설명 가능한 회귀 해석
모듈인 SHAP을 통합한 자동화 설계 프레임워크를 제안하였
다. 수치 기반 예측, 해석 가능성, 조건 생성까지 포괄하는 기술
통합 구조를 제공하며, AIMI 플랫폼을 통해 실제 구현 가능성
을 검토하였다. 향후에는 정량 실험 (예: 예측 정확도, SHAP-
LM해석정합성)에대한검증을기반으로,강화학습기반실험
최적화, 고도화된 신경망 (예: 그래프 신경망)을 통한 멀티모달
구조 (예: SEM image)통합, LLM경량화적용등을통해자율
실험형 소재 개발 시스템으로 확장할 계획이다.
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