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Table 1. MVDR Beamforming Error Rate Comparison
Conventional SWSU
MVDR MVADR
Beamforming Beamforming
Normalization
magnitude 0.1227 0.1377
max error
Normalization
magnitude 2.432e-04 2.731e-04
inverted
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Table 2. FPGA Resource Utilization Comparison
Conventional
SWSU MVDR
MVDR .
. beamforming
beamforming
LUT 36758 34631
FF 31037 25644
BRAM 4 4
URAM 16 0
DSP 106 116
m zZ2&
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