
FPGA에서의 Stochastic Weighted Sub-block Update (SWSU)를 이용한
MVDR 공분산 추정 가속

송원재, 이성주*

세종대학교 반도체시스템공학과 및 지능형드론융합전공,
*세종대학교 AI 융합 전자공학과 및 지능형드론융합전공

wonjae@itsoc.sejong.ac.kr, *seongjoo@sejong.ac.kr

Accelerating MVDR Covariance Estimation on FPGA Using Stochastic Weighted
Sub-block Update (SWSU)

　Wonjae Song, Seongjoo Lee*

Dept. of Semiconductor Systems Engineering and Dept. of Convergence Engineering for Intelligent Drone,
Sejong Univ., *Dept. of AI Convergence Electronic Engineering and Dept. of Convergence Engineering for

Intelligent Drong, Sejong Univ.

요 약

본 논문에서는 MVDR(Minimum Variance Distortionless Response) 빔포밍의 핵심 연산인 공분산 행렬 역행렬 계산의 실시간
처리 한계를 극복하기위해, Stochastic Weighted Sub-block Update(SWSU) 기법을제안한다. 제안 기법은 연산복잡도를 평균 O((1−τ)·((M/P)²))로
감소시킨다. MATLAB 기반 시뮬레이션 결과, 제안 SWSU MVDR는 기존 MVDR 대비 약 3배 빠른 처리 속도와 1.12배 수준의 오차율을

달성하였으며, FPGA 구현에서는 LUT 6%, FF 18% 감소 및 URAM 제거, 전력 소모 약 7% 절감을 입증하였다. 이를 통해 SWSU 기법이 고채널
수 환경에서 실시간 하드웨어 빔포밍에 적합함을 확인하였다.

Ⅰ. 서 론

MVDR(Minimum Variance Distortionless Response) 빔포밍은 간섭 억

제및신호증폭성능이뛰어나다양한레이더·통신 시스템에서널리사용

된다. 그러나 MVDR의 핵심 연산인 공분산 행렬 R의 추정 및 역행렬 계

산은 O(M3)의 계산 복잡도를가지며[1], 채널 수 M이 커질수록실시간구

현이 매우 어려워진다. 이를 완화하기 위해 본 논문은 확률적(stochastic)

또는 랜덤화(randomized) 업데이트를 도입하여,[2][3] 매 샘플마다 업데이

트 강도나 수행 여부를 난수에 기반해 결정함으로써 연산량을 동적으로

조절하는 “Stochastic Weighted Sub-block Update (SWSU)” 알고리즘

을 제안하고 해당 SWSU 알고리즘을 MATLAB과 FPGA에 구현해 기존

의 MVDR 빔포밍과 비교한다.

Ⅱ. 본론

1. 서브 블록 분할 전략

전체공분산행렬 ∈ ×을 p개의서브블록으로분할한다. 보통 행
단위로균등분할하여, 각 블록크기가M/P * M인형태로나누거나, 대각

블록 형태로 M/P * M/P 크기로 분할할 수 있다. 제안 알고리즘

에서는 후자를 채택하며, 블록 인덱스 b=1,2,…,p에 대응하는 부분 행렬을

식 (1)로 정의한다.

            (1)

   ∈ (2)

  
  

   
(3)

 
 (4)

2. 확률적 가중 업데이트

매 입력 샘플 ∈ 이 들어올 때마다, 라운드 로빈 방식으로
블록 b 하나를 지정해 서브 블록을 선택한다. 식 (2)에 따라 확률

적 가중치를 산출한다. 이때    이면 업데이트를 완전히 건너
뛰고, 그렇지 않으면 부분 업데이트를 수행한다. =블록 b에 해
당하는 부분 벡터를 취하여, (Rank Update) sherman-morrison 기

반의 식 (3)으로 부분 업데이트를 한다. 이때 전체 행렬 는
업데이트된 블록만 교체하고 나머지 블록을 그대로 유지한다.

3. 연산 복잡도 분석

기존의 MVDR의 핵심 연산인 공분산 행렬 R의 추정 및 역행렬 계산은 의 계산 복잡도를 가진다고 언급했다. 본 논문은 서브 블록 업데
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이트 방식을 채택해 한 블록의 크기가 M/P * M/P가 된다. 식 (3)은 분모

연산에서   , 분자 연산에도  복잡도를 가져 식 (3)의 연산
복잡도는  가 되므로, 연산 복잡도는 가 된다.[4]
또한확률적 스킵으로평균 업데이트 확률의 (1-τ)만큼 수행하므로 본논

문의연산복잡도는 가된다. 이를통해 p와 τ를적절
히 설정하면, 기존 대비 최대 *배 및 스킵률에 따른 추가 절감이 가능하

다.[5]

4. MVDR 빔포밍 가중치 계산과 통합

SWSU로 갱신된 역공분산행렬을사용하여, 전형적인 MVDR 가중치를

식 (4)를 이용해 계산한다. 서브 블록별로 갱신된 부분만 최신 정보가 반

영되므로, 전체 가중치 계산에서도 부분 업데이트된 블록[6] 기여를 적절

히 통합하여 성능 저하를 최소화한다.

5. 실험 결과

MATLAB 시뮬레이션에서 기존의 MVDR 빔포밍이 83.070(s), SWSU

MVDR 빔포밍이 27.959(s)로 약 3배 빠른 시뮬레이션 속도를 보여줬다.

그에 비해 오차율은 표 1에서 볼 수 있듯 약 1.1배 정도만 증가했다.

FPGA에서 구현한 결과는 기존 MVDR 빔포밍이 1002,62(W), SWSU

MVDR 빔포밍이 935.40(W)로 전력이 약 0.9배 하락했고, 자원 사용량은

표 2를 보면 DSP를 제외하고 모두 크게 감소한 것을 확인할 수 있다.

표 1. MVDR 빔포밍 오차율 비교

Table 1. MVDR Beamforming Error Rate Comparison

표 2. FPGA 자원 사용량 비교

Table 2. FPGA Resource Utilization Comparison

Ⅲ. 결론

본 논문에서 제안한 Stochastic Weighted Sub-block Update(SWSU)

알고리즘은공분산 행렬을 p개의 서브 블록으로 분할하고확률적 가중(α)

과 스킵 임계값(τ)을 결합함으로써 연산 복잡도를 평균 O((1−τ)(M/p)2 )

수준으로 낮추었으며, MATLAB 시뮬레이션에서기존 MVDR 대비 약 3

배 빠른 처리 속도와 1.12배 수준의 오차율 증가를, FPGA 구현에서는

LUT 사용량을 약 6%, FF 사용량을 약 18% 절감하고 URAM을 제거하

며 전력 소모를 약 7% 절감함으로써 실시간 하드웨어 환경에서 고효율

MVDR 빔포밍 구현의 가능성을 입증하였다.
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