
FMCW 레이더용 CFAR 알고리즘 비교: Fast CFAR과 2D CFAR의 Vitis HLS
기반 성능 평가

이용빈, 이성주*

세종대학교 반도체시스쳄공학과 및 지능형드론융합전공, *세종대학교 AI융합전자공학과 및
지능형드론융합전공

lyngbn99@itosc.sejong.ac.kr, *seongjoo@sejong.ac.kr

Comparison of CFAR Algorithms for FMCW Radar: Vitis HLS-Based
Performace Evaluation of Fast CFAR and 2D CFAR

　Lee Yong Bin, Lee Seong Joo*

Dept. of Semiconductor Systems Engineering and Convergence Engineering for Intelligent
Drone, Sejong Univ., *Dept. of AI Convergence of Electronic Engineering and Convergence

for Intelligent Drone, Sejong Univ.

요 약
본 논문에서는 FMCW 레이더의타겟탐지정확도와처리속도를 개선하기위해 Fast CFAR(FCFAR) 알고리즘을 FPGA 기반 하드웨어로 구현하고기존의 2D CFAR
알고리즘과성능을비교평가하였다. FCFAR 알고리즘은기존알고리즘대비 Latency를 약 13% 감소시키고처리시간을 5.8ms에서 5.0ms로 개선하여실시간성향상을
입증하였다. 다만, 하드웨어 복잡성으로 인해 리소스 사용량이 증가하는 한계점이 존재하며, 향후 연구에서는 이를 최적화하여 실제 FPGA 구현까지 확장할 예정이다.

Ⅰ. 서 론

Frequency Modulated Continuous Wave(FMCW) 레이더는 자율주행

차량 및 드론 등 높은 정확도와 실시간성을 요구하는 분야에서 널리 사용

된다. FMCW 레이더는 Range-Doppler Map(RDM)을 생성하며, 타겟 탐

지를 위해 일반적으로 2D CFAR 알고리즘을 사용하지만, 연산량과 처리

시간이 많다는 문제가 있다. 이를 해결하기 위해 기존 연구[1]에서 2D

CFAR을 두 번의 1D CFAR로 대체한 2-Times 1D CFAR(2T1D CFAR)

을 제안했으나, 다중 타겟 상황에서 False Target이 검출되는 단점이 있

었다. 이를 보완하고자 2T1D CFAR과 기존 2D CFAR을 결합한 Fast

CFAR(FCFAR)을 추가로 제안하였지만[2], 실제 FPGA 기반의 하드웨어

구현 및 성능 검증은 아직 이루어지지 않았다. 본 논문에서는 이 두 알고

리즘을 C++로 설계한 후 Vitis HLS를 통해 Verilog 코드로 합성 및 시뮬

레이션하고, 하드웨어 기반 성능과 효율성을 비교 평가하여 제한된 플랫

폼에서도우수한 성능과실시간성을보장하는레이더 시스템구현가능성

을 제시한다.

Ⅱ. 본론

1. FMCW 레이더의 동작 원리

FMCW 레이더는 주파수가시간에따라 선형적으로 증가하는 Chirp 신

호를 송신하고, 타겟에서 반사된 Echo 신호를수신하여 두신호의주파수

차이로 Beat Signal을 생성한다. 각 Beat Signal에 FFT를 적용하면 타겟

의 거리 정보를 얻을 수 있고, 여러 Beat Signal 간 FFT를 통해 Doppler

효과를 활용한 타겟의 속도 정보를 얻는다. 이러한 과정을 통해 생성된

RDM에 CFAR 알고리즘을 적용하여 타겟을 효과적으로 추출한다.

2. CFAR 알고리즘

CFAR 알고리즘은 레이더의 거짓 경보율(False Alarm Rate)을 일정하

게 유지하며 정확한 타겟 탐지를 수행하는 기법으로, Cell Under

Test(CUT) 주변의 Training Cell에서 잡음 수준을 분석하여 Threshold

를 동적으로결정한다.[3] 가장 널리사용되는 방식은 Cell Averaging 방식

이며, 본 논문에서도 이를 기반으로 한다. 기존의 2D CFAR 알고리즘은

RDM의 모든 셀에 적용되어 연산량과 처리 시간이 많아 실시간 응용 분

야에서 효율성 문제가 발생할 수 있다.

3. 2-Times 1D CFAR 알고리즘

그림1.(a)에 설명된 2T1D CFAR는 기존 2D CFAR을 두 번의 1D

CFAR 연산으로 대체해연산 효율성을높이는 방법이다. 먼저 RDM의행

과 열을 각각 합산하여 Doppler와 Range 방향의 1차원 배열을 생성하고,

여기에 각각 1D CFAR을 적용하여타겟의위치(Index)를 찾는다. 이후 두

배열의 Index 교차점에서 최종 타겟을 검출한다. 이는 기존의 2D CFAR

보다 연산량은 적지만, 다중 타겟 상황에서 그림1.(b)와 같이 실제 타겟보

다 많은 False Target이 발생할 수 있다. 예를 들어, 2개의 타겟이 있을

때 최대 4개의타겟이검출되며, n개의 타겟이 존재하면 최대 n(n-1)개의

False Target이 생성된다.

4. Fast CFAR 알고리즘

Fast CFAR은 2T1D CFAR의 False Target 문제를 개선한 방법으로

그림2와 같은 구조를 가진다.. 먼저 2T1D CFAR을 수행하여 예비 타겟

위치를 추출한 후, 이 예비 타겟에 대해서만 2D CFAR을 적용해 실제 타

겟과 False Target을 구분한다. 이 방법은 전체 Range-Doppler Map이

아니라 일부 영역에만 2D CFAR을 적용하기 때문에, MATLAB 환경에

서 기존 2D CFAR 대비 연산량과 처리 시간을 약 98.8% 감소시키고, 그,

Fig. 1.(a) 2T1D CFAR Algorithm (b) Limit of 2T1D CFAR
그림 1.(a) 2T1D CFAR 알고리즘 (b) 2T1D CFAR의 한계

mailto:lyngbn99@itosc.sejong.ac.kr
mailto:seongjoo@sejong.ac.kr

림3과 같이 타겟 탐지 정확도도 향상시킨다. 본 연구에서는 이러한 알고

리즘을 Vitis HLS로 HDL 코드로 변환하고, C/RTL CoSimulation을 통

해 성능을 평가한다.

5. 실험 및 결과

이전 연구에서 MATLAB으로 구현했던 FCFAR과 2D CFAR 알고리

즘을 Vitis HLS 기반의 Synthesis 및 시뮬레이션을위해 C++로 재구현하

였다. KMD-2 레이더를 통해 획득한 실제 데이터를 이용했으며, 레이더

의 파라미터 및 실측 환경은 표1에 제시되어 있다. 작성된 C++ 함수는

Vitis HLS를 통해 Synthesis되어 Verilog 기반 하드웨어 Kernel로 변환

되며, Synthesis Report를 통해 사용된하드웨어리소스정보가 제공된다.

이후, Vitis HLS의 C/RTL CoSimulation을 수행하여 C++ 함수와 Kernel

출력의 일치 여부 및 Latency를 평가하였다.

실험 결과, 표2와 같이 FCFAR의 Latency는 501,745 cycles로 측정되

어 2D CFAR의 579,403 cycles 대비 약 13% 감소하였다. 목표 Clock 주

기(10ns)를 기준으로 처리 시간을 환산하면, FCFAR이 약 5.0ms, 2D

CFAR이 약 5.8ms로 나타났다. 그러나 FCFAR 알고리즘은 여러 단계를

연속적으로 수행하는 복잡한 구조를 가지고 있어, 단순 반복 구조인 2D

CFAR보다 FF와 LUT 등 하드웨어 리소스 사용량이 증가하였다. 이는

2D CFAR이 동일한 하드웨어 유닛을 반복적으로 사용하여 Vitis HLS가

효과적으로 최적화할 수 있었기 때문으로 판단된다. 한편, Vitis HLS의

리소스 최적화 성능은 합성 대상인 C++ 코드의 알고리즘과 구조적 특성

에 크게 의존하므로[4], 추후 Verilog 코드를 직접 수정하여 추가적인리소

스 최적화를 달성할 수 있을 것으로 기대된다.

결론적으로, FCFAR 알고리즘은 리소스 사용량의 증가에도 불구하고

2D CFAR 대비뛰어난탐지 정확도와낮은 처리 지연시간을제공하므로,

합리적이고 효율적인 선택이라고 평가할 수 있다.

표 1. 레이더와 타겟 파라미터
Table 1. Radar and Target Paramete

표 2. Vitis HLS의 Synthesis 및 Cosimulation 결과
Table 2. Result of Vitis HLS Synthesis and Cosimulation

Ⅲ. 결론

본논문에서는 FMCW 레이더의 타겟탐지를 위한 FCFAR 알고리즘과

기존 2D CFAR 알고리즘을 Vitis HLS를 통해 하드웨어 Kernel로

Synthesis하고 성능을 비교하였다. 실험 결과, FCFAR은 기존 2D CFAR

대비 Latency가 약 13% 감소했으며, 처리 시간도 5.0ms로 기존의 5.8ms

보다 우수하여 실시간성이 입증되었다. 다만, 알고리즘 구조의 복잡성으

로 인해 FF와 LUT 등 리소스 사용량이 증가하는 한계가 있었다. 향후에

는직접적인알고리즘구조재설계및 Verilog 코드 최적화를통해리소스

를 효율화하고, 실제 FPGA Implementation까지 진행하여 성능과 효율성

을 추가 검증할 계획이다.

ACKNOWLEDGMENT

본연구는과학기술정보통신부의재원으로한국연구재단, 무인이동체원천기술개발

사업단의 지원을 받아 무인이동체원천기술개발사업과(No.

2023M3C1C1A01098414) 정부(과학기술정보통신부)의 재원으로 한국연구재단의

지원을 받아 수행되었고(No. 2023R1A2C1006340) 검증을 위한 EDA관련 툴은

IDEC의 지원을 받았음

참 고 문 헌

[1] Y. B. Lee, S. J. Lee, “New CFAR Algorithm for FMCW Radar

to Reduce Detection Speed and Computational Load”, in Proc.

of the 2024 IEIE Summer Conference, pp. 2219-2222, Jeju

Island, Korea, June 2024.

[2] Y. B. Lee, S. J. Lee, “Fast CFAR Algorithm for Reducing

Computational Load and Processing Time in Multi-Target

Situations of FMCW Radar”, Proceedings of Symposium of the

Korean Institute of communications and Information

Sciences, pp. 1602-1603, Gangwon, Korea, february 2025.

[3] A. Jalil, H. Yousaf, M. I. Baig, "Analysis of CFAR

Techniques," in Proc. of the 2016 13th International Bhurban

Conference on Applied Sciences and Technology (IBCAST),

pp. 108-115, Islamabad, Pakistan, Jan. 12-16, 2016.

[4] S. Dai, H. H. Najafabadi, and M. B. Tahoori, “FPGA HLS

Today: Successes, Challenges, and Opportunities,” ACM

Transactions on Reconfigurable Technology and Systems,

15(3), pp. 1–23, 2022.

Fig. 2. Block Diagram of FCFAR
그림 2. FCFAR의 블록 다이어그램

Fig. 3. MATLAB Simulation Result of 2DCFAR and
FCFAR
그림 3. 2D CFAR과 FCFAR의 MATLAB 시뮬레이션 결과

FMCW Radar Parameter

Center Freq. 23.5GHz

Max Distance 200m

Range Resolution 0.2m

Bandwidth 970MHz

of Chirp per Frame 256

of Sample per Frame 256
Target Parameter

Distance 2.0m, 4.0m
Angle -20deg, 20deg
speed 0, 0

Target CLK = 10ns 2D CFAR FCFAR
Rate of

Decrease
Synth Report

BRAM 694 966 -39.19%
DSP 5 6 -20%
FF 13,234 88,739 -570.54%
LUT 38,316 208,976 -445.40%

C/RTL CoSimulation
Latency [Cycle] 579,403 501,745 13.4%

