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Abstract—This study proposes QCIM-RSMA, combining
quantum-optimized interference mapping with RSMA for GEO-
LEO coexistence. A parameterized quantum optimizer adapts
RSMA precoding via real-time CSI and interference feedback,
guided by a spatiotemporal map I(t, f, x⃗) aimed for efficient
spectrum sharing with controlled GEO interference under dy-
namic LEO channel conditions.
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machine learning,GEO-LEO coexistence,rate-splitting multiple
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I. INTRODUCTION

The growing demand for non-terrestrial networks (NTNs)
necessitates spectrum sharing between LEO (secondary) and
GEO (primary) satellite systems, requiring interference-aware
transmission [1]. Rate-Splitting Multiple Access (RSMA) has
emerged as a robust strategy for such scenarios [2], with re-
cent applications in GEO-LEO coexistence [3], [4]. However,
existing approaches using static interference thresholds [5] fail
to capture dynamic real-world conditions.

This work proposes QCIM-RSMA, integrating: 1) A cog-
nitive interference map I(t, f, x⃗) combining CSI, orbital
data, and GEO feedback 2) Quantum-assisted optimization
(QCIM) using parameterized circuits [6] to adapt RSMA con-
trol parameters 3) Joint precoding optimization under spatio-
temporal interference constraints

To the best of the authors’ knowledge, this work pioneers
quantum-enhanced RSMA framework for dynamic inter-orbit
coexistence, addressing both real-time interference manage-
ment and adaptive resource allocation.

II. SYSTEM MODEL

Fig. 1a (Left), illustrates the considered NTNs scenario
where a LEO satellite acts as a secondary user coexisting
with a primary GEO satellite. LEO employs RSMA to serve
K single-antenna users using Nt transmit antennas, while
ensuring that interference to the GEO segment remains be-
low a dynamic threshold Γthresh(t). The RSMA transmission
signal expressed as: x(t) = p0(t)s0(t) +

∑K
k=1 pk(t)sk(t),

where s0(t) is the common stream and sk(t) denotes the
private stream intended for user k with associated precoders
p0, . . . ,pK ∈ CNt×1, and subject to the respective power and
GEO interference threshold constraints:

∑K
k=0 ∥pk(t)∥2 ≤ Pt

, and
∑K

k=0 |gH
GEO(t)pk(t)|2 ≤ Γthresh(t), such that gGEO(t)

is the interference link to the GEO receiver, the LEO-to-user
channel is modeled as:

hk(t) =
√
GtGr ·

(
c

4πfcdk(t)

)2

· ej2πξk(t) · gk(t), (1)

where dk(t) is distance to user k, Gt and Gr are transmit
and receive antenna gains, and gk(t) ∼ CN (0, I) is Rayleigh
fading [3]. Doppler shift is introduced as a phase rotation
ej2πξk(t). Channel estimation follows: ĥk(t) = hk(t) +
ek(t), ek(t) ∼ CN (0, σ2

eI), to satisfy the imperfect CSI
assumption. gGEO(t) can be either estimated via spectrum
sensing or predicted from satellite orbital ephemerids [1].

III. QCIM-RSMA FOR GEO–LEO COEXISTENCE

Fig. 1a (Right), summarizes how RSMA precoding is opti-
mized under cognitive interference constraints using the QCIM
module which seeks to solve the following problem:

max
p0,...,pK ,α

w0R0(t) +

K∑
k=1

wkRk(t), (2a)

s.t.
K∑

k=0

∥pk(t)∥2 ≤ Pt, (2b)

K∑
k=0

∣∣gH
GEO(t)pk(t)

∣∣2 ≤ Γthresh(t). (2c)

R0,k and Rk represent the common and private stream decod-
ing rates, α as the power-splitting parameter. I(t, f, x⃗) is then
constructed using CSI and GEO feedback, and fed into UQCIM
to generate optimized RSMA control variables.

For real-time interference dynamics, a cognitive interference
map is defined below:

I(t, f, x⃗) =
M∑

m=1

K∑
k=1

∣∣∣g(m,k)
GEO (t, f, x⃗) · p(m)

k (t)
∣∣∣2 . (3)

x⃗ ∈ R3 is the spatial coordinate, g(m,k)
GEO (t, f, x⃗) is the channel

gain between m LEO beam transmitting user k’s stream
and the GEO terminal at location x⃗, and p

(m)
k (t) is the

corresponding RSMA precoding vector.
Remark: Eq. (3) captures the aggregate LEO interference

at a spatial point x⃗, enabling spatio-temporal interference
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(a) QCIM-RSMA architecture: (Left) GEO-
LEO coexistence scenario (Right) Quantum
optimization module
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Figure 1: (a) System model and simulation result

control. The real-time constraint in Eq. (2c) is thus a sampled
evaluation of I(t, f, x⃗) against a dynamic GEO threshold.
Unlike conventional CR-based methods such as [7], which
enforce per-beam static constraints:

fm
m′,u′,k · ρm,k ≤ Γthresh, ∀m, k, (4)

QCIM integrates quantum optimization with spatio-temporal
mapping, making it adaptable to orbital motion and environ-
mental variability.

A. Quantum-Assisted RSMA Optimization via QCIM

The QCIM module encodes CSI and GEO interference
constraints into a parameterized quantum circuit with: A
normalized vector cnorm ∈ R2KNt acts as input. A circuit
with Nq = ⌈log2(NtK)⌉ + 1 qubits, having a custom ZZ
feature map UZZ(cnorm), an entangling layer (CZ gates), and
Parameterized rotations Ry(θ

[c]
q )Rx(θ

[p]
q ) is defined. During

measurement, an observable Ô = Z⊗Nq over Nshot samples is
simulated. The output QCIMout = [u1, ..., uK , α] hence con-
trols: ρpriv = (Pt−ρ0)

α, and, wk = uk · Peff,k
Peff,k+Ik

, where Peff,k

is the effective received power, and Ik the interference. Then,
precoders are updated via quantum-optimized MMSE: p′

0 =
(Heff,0 + σ2I)−1Heff,0

∑
k wk,p

′
k = wk(ĥ

H
k ĥk + σ2I)−1ĥH

k ,
given Heff,0 as the effective channel for s0(t). Parameters θ
are trained to minimize:

L(θ) =−
K∑

k=1

wkRk(t) + w0R0(t)

+ λ ·max (0, IGEO(t)− Γthresh(t))
2
,

(5)

using the parameter shift rule for gradient updates, considering
IGEO(t) is the time varying interference at the GEO link.

This section presents simulation results for GEO–LEO
coexistence mainly based on parameters from [4]. The QCIM-
RSMA setup uses Nepisode = 20, Ndata = 150, and interference
penalty λ = 0.1.

Figs. 1b and 1c highlight QCIM-RSMA’s performance.
Fig. 1b shows rapid convergence , while Fig. 1c demonstrates
maximum sum rate under varying interference thresholds
compared to CIM-RSMA and conventional CR. These results
confirm QCIM-RSMA’s efficiency for dynamic, interference-
aware spectrum sharing in GEO–LEO networks.

IV. CONCLUSION

This paper has addressed quantum-assisted interference
management for GEO-LEO coexistence using a QCIM-
RSMA. It combined classical CSI with quantum optimization
of RSMA parameters via cognitive interference mapping.
Results validate real-time adaptation within GEO interference
constraints.
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