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Abstract—This study presents PureMetaScan, a conceptual
explainable AI system emphasizing the need for trustworthy
detection of vulnerable Smart Contracts (SCs) within the Meta-
verse. Using a deep neural network and LIME explainer for
transparent explanations, our solution achieves benchmark detec-
tion performance using the Smartbugswild dataset. Our approach
safeguards digital assets, governance, and other functionalities
requiring safe SCs, fostering trust within the 507.8 billion dollar
Metaverse market.

Index Terms—Metaverse, Smart Contracts, Blockchain, Ex-
plainable AI, Artificial Intelligence

I. INTRODUCTION

The Metaverse [1], which strives to become the next-
generation immersive Internet with decentralized governance,
is regulated through self-executing blockchain Smart Contracts
(SCs) [2]. SCs play a significant role in the Metaverse, such
as digital asset maintenance, and voting processes. Meanwhile,
SCs, although termed smart, can be vulnerable to attacks such
as reentrancy, arithmetic & gas issues, and access control
attacks. Vulnerable SCs can pose severe risks for users and
Metaverse stakeholders [3].

Recent works have employed Artificial Intelligence (AI)
to enable SC vulnerability detection systems to mitigate SC
security risks for improved detection [4]. While most focus
on accuracy improvement, there is a major gap in trustworthy
and explainable SC detection, which offers reliable, confident,
and secure SC vulnerability detection for security teams [5].
Therefore, we foresee the lack of explainability solutions in
Metaverse SCs, and propose PureMetaScan, for trustworthy
SC vulnerability detection in the Metaverse.

II. SYSTEM METHODOLOGY

This section outlines the proposed PureMetaScan as shown
in Figure 1 and algorithm 1. PureMetaScan integrates a
preprocessing phase, a DNN model for SC classification, and
a model-agnostic explainability method for trustworthy and
reliable SC vulnerability in Metaverse.

The benchmark SmartBugs Wild dataset [6] was employed
for the experiment, which has about 47,518 unique solid-
ity files, encompassing 200,000 contracts. The step-by-step
approach for the dataset preprocessing is detailed in Fig.
1, where the TF-IDF vectorization technique was employed
for feature extraction of Solidity SC codes. Afterward, an

autoencoder was used to reduce dimensionality before training
a DNN classifier for classification. The DNN consists of a
sequential neural network with three densely connected layers:
an initial layer with 64 neurons, followed by a 32-neuron layer,
all utilizing ReLU activation and interspersed with dropout
regularization layers at rates of 0.3 and 0.2, respectively. After
classification, the LIME eXplainable AI (XAI) library was
employed for visualizing predicted SCs.

Algorithm 1 : XAI Metaverse SC Detection Method
1: Input: Smart contracts S, labels Y , AE settings θAE ,

DNN settings θDNN , XAI tools X = {LIME}
2: 1. Feature Extraction:

Extract features F = {xi}
Split into compiler and non-compiler features
Create dataset D = {(xi, yi)}

3: 2. Autoencoder Compression:
Train AE: zi = fenc(xi)
Minimize reconstruction loss:

LAE =
1

N

N∑
i=1

∥xi −Aθ(xi)∥2

4: 3. Classification:
Train DNN on zi to predict yi
Use regularization (e.g., dropout)

5: 4. Explanation:
6: for each test sample zi do
7: Generate explanation using SHAP/LIME
8: end for
9: Output: Predictions Ŷ , compressed features Z , explana-

tions E

III. PERFORMANCE EVALUATION

As shown in Table I, the SC DNN model achieved overall
precision, recall, F1-score, accuracy, and MCC of 68.10%,
68.15%, 68.12%, 78.77%, and 52.19%, respectively. These
results affirm the framework’s generalizability across di-
verse input formats. The Clean class shows the best accu-
racy (78.80%) and F1-score (70.01%). Time Manipulation
is the best-detected vulnerability class (F1: 71.26%, MCC:
57.56%), while Reentrancy remains challenging (F1: 63.01%,
MCC: 45.34%), likely due to its complex semantic nature.
Training and inference remain efficient (16.52s and 0.08s,
respectively), supporting practical use.

XAI Results: Fig. 2 shows the LIME XAI prediction
probability of the SC vulnerability detection model classifying
a Solidity SC sample index as time-manipulation with high



Fig. 1. illustration of the proposed PureMetaScan, integrating XAI for smart contract vulnerability detection in the Metaverse.

Fig. 2. LIME explanation with a high-confidence prediction of a Time Manipulation SC instance from the Smartbugs Wild dataset.

green bar confidence (91%). The remaining classes, such as
reentrancy and clean classes, yield a very low prediction prob-
ability of 5% and 4% respectively. Top contributing feature
tokens, such as event, uint, public, VAR49, and address, appear
frequently and are highlighted in green, indicating their role
in pushing the prediction toward time manipulation.

Attack Impact: Metaverse applications like live gaming
require precise timing for fairness. Thus, the visual XAI
detection of time manipulation prevents skewed results that
favor attackers who adjust timestamps to claim rewards or
leaderboards.

TABLE I
SC VULNERABILITY DETECTION PERFORMANCE USING THE

SMARTBUGSWILD DATASET.

Class Prec. Rec. F1 Acc. MCC Train / Pred (s)

Clean 69.77 70.26 70.01 78.80 53.61
16.52 / 0.08Reentrancy 63.82 62.22 63.01 76.07 45.34

Time Manip. 70.63 71.91 71.26 81.44 57.56

Overall 68.10 68.15 68.12 78.77 52.19

IV. CONCLUSION

The proposed PureMetaScan integrates XAI for SC vul-
nerability detection in the decentralized Metaverse. Compared
to previous works in this domain, which focus mainly on
accuracy improvement, the proposed scheme of this study aims
towards an auditable and interpretable SCs in the Metaverse
for compliance teams and developers, a gap which has re-
mained underexplored.
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