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Abstract—Thermal runaway in lithium-ion batteries poses
serious safety risks, especially in electric vehicles. This paper
presents ThermaGuard, a physics-guided long short-term memory
(LSTM) model that integrates Joule heating-based predictions
with residual learning to improve battery temperature forecast-
ing. By combining physics-based insights with deep learning,
ThermaGuard enhances accuracy and interpretability. Evaluated
against a standard LSTM using real battery datasets, Therma-
Guard achieved over 5% improvement in RMSE and MAE.
Results show its strong generalization and potential for early
thermal anomaly detection, offering a safer and more reliable
foundation for battery management systems.

Index Terms—thermal runaway, battery, overheating, EVs,
Physics

I. INTRODUCTION

Lithium-ion batteries are central to powering electric vehi-
cles (EVs), due to their high energy density and long cycle
life [1]]. However, their operation presents critical safety chal-
lenges, particularly the risk of thermal runaway, a condition in
which excessive internal heat leads to uncontrollable tempera-
ture rise, potentially resulting in fire or explosion [2f]. This risk
is exacerbated in EVs, where dynamic operating conditions
and high current loads can accelerate thermal instabilities [3]].

Current battery management systems (BMS) monitor tem-
perature using onboard sensors, but most lack the ability
to predict thermal runaway events before they escalate [4].
Recent data-driven approaches, particularly long short-term
memory (LSTM) networks, have shown promise in modeling
battery thermal behavior [5]]. However, these models often fail
to generalize under unseen conditions and do not account for
the underlying physical mechanisms driving heat generation,
such as Joule heating [3].

To address this gap, this study proposes ThermaGuard,
a physics-guided LSTM framework that combines a first-
principles thermal model with deep learning through residual
learning. The physics-based component estimates baseline
temperature trend based on current and internal resistance,
while the LSTM model learns the residual deviations caused
by nonlinear or unmodeled effects.

ThermaGuard’s performance was evaluated against a stan-
dard LSTM model using real-world high-temperature battery
datasets. Results demonstrated that integrating physics into
the learning process significantly enhanced thermal prediction,
enabling more robust early-warning systems for battery safety.

II. METHODOLOGY

ThermaGuard consists of two main components: (i) A
physics-based model that estimates temperature rise due
to Joule heating effects. (ii) residual LSTM model that
learns the deviation between observed and physics-predicted
temperatures. The final prediction is obtained by summing
the output of the physics model and the learned residual,
thereby improving both accuracy and interpretability. The
overall system architecture is illustrated in Fig.
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Fig. 1. ThermaGuard architecture for thermal runaway prediction in lithium-

ion batteries.

A. Physics-Based Temperature Estimation

The initial temperature estimation is based on Joule heating
principles. The heat generated within the battery is calculated
as: Q = I’R, where: Q is the heat generation (in watts),
I is the battery current (in amperes), and R is the internal
resistance (in ohms).

The temperature prediction from the physics model may be
expressed as: Tppy = Tamp + K - QQ, where: Tppy is the physics-
based temperature estimate, Ty, iS the ambient temperature,
k is a thermal proportionality constant.

B. Residual Learning with LSTM

The residual between the actual and predicted temperature
by physics may be defined as: R = Tiye — Tpny
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Fig. 2. LSTM model architecture.

A long-short-term memory (LSTM) network was trained
to predict this residual R based on historical battery data.
The LSTM captures temporal dependencies and non-linear
behavior not modeled in the physics-based component. The
LSTM model is illustrated in Fig. 2]

TABLE 1
DATASET AND TRAINING CONFIGURATION FOR THERMAGUARD

Component Details

Dataset Source Battery-M dataset [6]

Cell Used Battery-M (80% capacity after 1158 cycles)
Features Temperature, Current, Resistance
Normalization Min-max scaling

Train-Test Splits  80:20

Optimizer Adam

Epochs 20

Batch Size 32

Framework TensorFlow 2.10 (Python 3.10)

Hardware Intel i5, 32 GB RAM, GTX 1650 GPU

The final ThermaGuard temperature prediction is then cal-
culated as:Tpreq = Tphy + R This formulation ensures that
the prediction remains grounded in physical principles while
adapting to real-world non-linearities and uncertainties.

The model was trained using the mean squared error
(MSE) between predicted and true temperatures: £ =
%E?:l(Ttme’i — Tpred,i)?. This loss encourages the model to
reduce both the systematic error of the physics model and the
learned deviations. The dataset and training configuration used
in this study is described in Table

ITI. RESULTS

Table M| shows that ThermaGuard consistently outperformed
the standard LSTM model across all metrics. Specifically, it
achieved a lower MSE (0.0075 vs. 0.0084), RMSE (0.0866 vs.
0.0916), and MAE (0.0679 vs. 0.0734), representing over 5%
improvement in both RMSE and MAE. Additionally, the R?
score improved from 0.842 to 0.860, demonstrating stronger
predictive power and generalization.

TABLE 11
PERFORMANCE COMPARISON BETWEEN LSTM AND ThermaGuard

Model MSE RMSE MAE R?
Standard LSTM ~ 0.0084  0.0916  0.0734  0.842
ThermaGuard 0.0075  0.0866 0.0679  0.860

Figure [3] visualizes the comparison between predicted
battery temperatures from both models. The ThermaGuard

model’s predictions closely follow the actual temperature
trend, especially during high-variance periods, indicating im-
proved learning of thermal dynamics and better risk estimation
under fluctuating loads.
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Fig. 3. Performance comparison of standard LSTM and ThermaGuard on

Battery-M dataset
IV. CONCLUSION

This study proposed ThermaGuard, a physics-guided LSTM
model that combines Joule heating principles with residual
learning. It outperformed standard LSTM with over 5% im-
provement in RMSE and MAE, offering improved accuracy
for battery thermal safety prediction.
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