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요 약  
 

순환 신경망(Recurrent neural network, RNN)는 시퀀스 단위로 입출력을 처리하여 

시계열(Time-series) 데이터를 이용한 분석에 널리 활용되고 있다. 본 논문에서는 시계열 

레이더 신호 데이터를 이용하여 23종의 신호 범주를 분류하기 위한 RNN 기반의 

인공지능(Artificial Intelligence, AI) 모델을 설계하고, 단일 RNN 셀에서의 출력 결과를 이용한 

풀링(Pooling) 방법과 어텐션(Attention) 기반의 풀링을 RNN 출력에 적용하여 풀링 방식에 따른 

AI 모델의 훈련 및 변조 방식 분류 정확도 성능을 비교한다. 

 

 

Ⅰ. 서 론  

시계열(Time-series) 데이터는 연속적인 시간 

간격으로 수집된 기록으로 센서 관측 정보, 주식 변동 

정보, 전파 신호 등의 다양한 분야에서 활용하고 있는 

정보가 모두 시계열 데이터에 포함된다. 과거에는 통계적 

특성, 추세, 계절성, 주기성 분석 등을 위해 시계열 

데이터를 활용했지만 인공지능(Artificial intelligence, AI) 

기술 발달에 따라 미래 시점의 데이터를 예측하는 회귀 

분석 또는 해당 데이터가 속한 범주를 분류하는 등 

다양하고 복잡한 기능의 처리를 위해 시계열 데이터가 

이용된다. 특히, 과거의 출력이 현재의 입력이 되는 

시간의 흐름에 따라 순차적으로 데이터를 처리하는 순환 

신경망(Recurrent neural network, RNN)은 시계열 

데이터 처리를 위한 AI 모델로 주목받고 있다.  

한편, 레이더는 목표물에 신호를 송신하여 반사되어 

돌아오는 신호를 이용하여 위치, 속도 등을 감지하는 

장치로 다양한 분야에서 이용되고 있다. 무선 스펙트럼 

감시, 통신 환경 분석, 비인가 레이더 신호 탐지 등 

다양한 목적을 위하여 레이더 신호 분석이 필요하다. 

데이터 통신과 마찬가지로 레이더에서도 다양한 변조 

방식이 적용되므로 레이더 신호 분석을 위해 어떠한 

변조가 적용되었는지 식별하는 것이 선행되어야 한다. 

그러나, 다양한 변조 방식에 대한 레이더 신호를 

확보하는 것이 어려울 뿐만 아니라, 레이더 신호 자체의 

복잡한 구체와 함께 채널 페이딩, 잡음 신호 등 여러 

요인들이 혼합되어 있기 때문에 레이더 신호의 변조 

방식을 분류하는 것은 매우 어려운 문제로 남아있다.  

본 논문에서는 22종의 변조 방식이 적용된 레이더 

신호와 순수 잡음 신호에 대한 시계열 데이터셋을 

이용[1]하여 총 23종의 신호를 분류하는 모델을 

설계한다. 게이트 순환 유닛(Gated recurrent unit, GRU) 

기반의 RNN 구조를 이용하여 신호를 분류하는 AI 

모델을 설계하고, 신호 분류 정확도 성능을 분석한다. 

이를 위하여, 마지막 시점에서의 RNN 출력만을 

사용하여 풀링(Pooling)하는 방법과 모든 시퀀스에 대한 

RNN 출력을 어텐션(Attention) 기반으로 풀링[2]하는 

2가지의 풀링 방법을 적용하여 AI 모델의 훈련 과정 및 

레이더 신호 분류 정확도 성능을 비교한다.  

Ⅱ. 시계열 레이더 신호 데이터 분류 AI 모델 설계  

22종의 변조가 적용된 레이더 신호와 순수 잡음 

신호의 총 23종의 신호로 구성된 시계열 데이터셋은 

각각의 신호 범주에 대하여 [-12dB, 20dB] 범위에서 

2dB 간격으로 분할된 총 17개의 SNR(Signal-to-noise 

ratio) 값과 시간 축에서 1024의 크기로 샘플링된 

IQ(In-phase and Quadrature) 복소수(complex) 신호 

조합으로 구성된다. 

각각의 샘플링 구간 𝑖 에서 복소수 신호에 대하여 

실수부와 허수부를 분리하여 1개의 2차원 벡터로 

구성하여 𝑥𝑖 로 표현 가능하다. 한편, 이러한 𝑥𝑖 를 

입력으로 받는 1개의 RNN 셀의 출력을 ℎ𝑖 라 할 때, 

RNN 셀에 대한 연산은 다음과 같이 출력이 다시 

입력으로 들어가는 순환 구조의 관계식으로 표현된다. 

 

ℎ𝑖+1 = 𝑅𝑁𝑁(𝑥𝑖 , ℎ𝑖).              (1) 

 

여기서, ℎ𝑖 의 차원 크기는 RNN을 설계할 때 조절  

가능한 변수이고, 출력 계층과 연결하기 위해 계산된 

RNN 출력을 풀링하여 FC(Fully-connected) 계층으로 



연결해야 한다. 본 논문에서는 다음 2가지의 풀링 

방법을 고려한다. 첫번째로, 다대일 회귀 분석 RNN 

구조에서 주로 사용하는 마지막 RNN 셀의 출력 결과만 

풀링하여 FC 계층으로 연결하는 방법이 있다. 그러나, 

신호 분류에 있어서 주요한 특성 값이 마지막 RNN 출력 

결과에 큰 영향을 미치지 않는 경우에는 전체 모델의 

성능이 떨어질 수 있다. 이를 보완하기 위한 두번째 풀링 

방법으로 어텐션 계층을 이용하여 모든 RNN 셀의 

출력에 대한 가중치를 계산하고, 시퀀스 위치에 따른 

가중치를 반영하여 출력 결과를 합치는 자연어 처리에서 

제안된 어텐션 기반의 풀링[2]을 다음과 같이 적용한다.  

 

    𝐴𝑡𝑡𝑒𝑛𝑖𝑜𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔(ℎ1, … , ℎ1024) = ∑ 𝛼𝑖ℎ𝑖
1024
𝑖=1 .    (2) 

 

여기서, 𝛼𝑖 는 𝑖 번째 RNN 셀 출력에 대한 어텐션 

가중치이고, (2)에서 확인할 수 있듯이 풀링이 적용된 

결과의 차원은 단일 RNN 셀의 출력 결과의 차원과 

동일하다.  

본 논문에서는 풀링된 결과로 구성된 계층을 생성하고, 

이를 분류하고자 하는 범주의 개수와 동일한 23개의 

뉴런을 갖는 출력 계층과 연결한다. 최종적으로 출력층의 

결과에 softmax 활성 함수를 적용하여 입력된 시계열 

신호 데이터의 범주를 분류한다. 입력된 레이더 신호의 

분류를 위한 AI 모델의 전체 구조는 그림 1과 같다.  

Ⅲ. 풀링 방식에 따른 RNN 모델 성능 비교  

본 논문에서는 GRU 구조의 RNN 모델을 사용한다. 

RNN 셀에 대한 출력 결과의 차원은 64로 설정하고, 

RNN 셀은 1개의 은닉층을 사용한다. 한편, 어텐션 

기반의 풀링을 적용하는 경우 어텐션 FC 계층에서 

사용하는 뉴런의 개수는 64로 설정한다.  

시계열 신호 데이터셋에 대하여 훈련 데이터셋, 검증 

데이터셋, 테스트 데이터셋은 다음과 같이 생성한다. 

훈련 데이터셋은 23개의 신호 범주에 대하여 17개의 

SNR 값에 대하여 100개씩 샘플링 하여 생성한다. 

모델의 성능을 평가하기 위한 검증용 데이터셋과, 테스트 

데이터셋은 훈련 데이터셋과 독립된 값을 갖도록 하여 

신호 범주와 SNR 값에 대하여 50개씩 샘플링 하여 

생성한다. 2가지 풀링 방식에 대한 공평한 성능 비교를 

위하여 동일한 신호 데이터셋이 동일한 데이터셋에 

포함되도록 구성한다.   

설계된 모델은 Adam optimizer를 사용하고, learning 

rate=0.001을 적용하여 300개의 epoch 동안 cross 

entropy loss를 최소화하도록 훈련시킨다. 모델 훈련 

과정에서의 배치의 크기는 100이고, 시퀀스의 위치에 

따른 RNN 출력 결과의 불균형과 gradient 폭주를 

완화시키기 위하여 RNN 출력에 대하여 layer 정규화를 

적용한다[3]. 훈련 과정에서의 훈련 데이터셋에 대한 

비용 함수를 출력한 결과는 그림 2-(a)와 같다. 그림 2-

(a)의 결과로부터, 풀링 방식과 무관하게 epoch가 

증가함에 따라 비용 함수 값이 감소하는 것이 확인된다. 

이와 동시에, 어텐션 기반의 풀링을 적용하는 경우, 

마지막 RNN 셀의 출력 결과로 풀링하는 방법 대비 비용 

함수가 튀는 스파이킹(spiking)을 완화하면서 AI 모델을 

더 빠르게 훈련시키는 현상이 관측된다.  

추가로, 훈련된 모델의 가중치를 검증 데이터셋의 비용 

함수 값이 가장 작은 epoch에서의 훈련 결과로 적용하여 

모델의 레이더 신호 분류 정확도 성능을 확인한다. 그림 

2-(b)는 SNR에 따른 테스트 데이터셋에 대한 정확도를 

출력한 결과를 나타낸다. 2가지 풀링 방식에 대하여 

모델이 수렴한 경우, 비용 함수 값이 비슷하므로 풀링 

방식과 무관하게 분류 정확도 성능이 유사하지만 높은 

SNR 영역에서는 어텐션 풀링을 적용한 경우의 성능이 

3%p 정도 개선되는 것을 알 수 있다. 

본 절에서 확인한 모의 실험 결과로부터 어텐션 

기반의 풀링을 적용하면 AI 모델을 안정적이고 빠르게 

수렴시키면서 훈련 가능함과 동시에 신호의 분류 정확도 

성능 또한 개선시킬 수 있는 것을 확인할 수 있다.  

IV. 결론 

본 논문에서는 시계열 레이더 신호에 대하여 변조 

방식 분류를 위한 RNN 기반의 AI 모델을 설계하고, 

RNN 출력 결과에 적용되는 풀링 방식에 따른 모델의 

훈련 과정에서의 비용 함수와 훈련된 모델의 신호 분류 

정확도 성능을 비교하였다. 모의 실험을 통하여 어텐션 

기반의 풀링을 적용하는 경우, RNN 셀의 마지막 출력 

결과만 사용하여 풀링하는 방법 대비 모델의 스파이킹 

현상을 완화시키면서 더 빠르게 훈련 가능한 것을 

확인하였다. 추가로, 높은 SNR 영역에서 어텐션 기반의 

풀링을 적용하는 경우, 신호 분류 정확도 성능이 더 

개선되는 것을 확인하였다. 향후, 시계열 신호의 샘플링 

크기, RNN의 구조 등을 변경하며 AI 모델을 설계하고, 

분류 성능을 분석할 예정이다.  
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그림 1. 시계열 신호 데이터 범주 분류를 위한 RNN 

기반 AI 모델 구조  

그림 2. 시계열 신호 분류를 위한 RNN 기반 모델 훈련 

데이터셋에 대한 손실 함수 및 SNR 에 따른 분류 정확도 


