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요 약  

 
본 논문에서는 DIGIT 센서로 획득한 촉각 이미지를 DeepJSCC (Deep Joint Source-Channel Coding) 기반으로 

전송·복원하고, 분류기로 표면 강성(stiffness)을 예측하는 과정을 하나의 프레임워크로 통합한 원격 촉각 지도 생성 

기법을 제안한다. 모의 실험을 통해 3D 형상 복원과 강성 분류 정확도를 검증하여 제안 기법의 실용성을 입증하였다. 

 

 

Ⅰ. 서론  

인간은 촉각을 통해 물체의 형태, 질감, 강성 등 

세부적 특성을 파악한다. 특히, 접촉을 통해 얻은 촉각 

정보는 시각이나 청각이 미치지 못하는 세밀한 물리적 

변화나 물체의 고유한 특성을 감지하여 환경과 물체를 

정밀하게 이해하는 데 핵심적인 역할을 한다.  

촉각 지도(Tactile map)는 이러한 촉각 데이터를 공간 

좌표와 결합해 물체 표면을 시각적으로 재구성하고, 

사용자가 직관적으로 해설할 수 있도록 제공하는 

기술이다 [1]. 물체의 세밀한 촉각 특성을 직관적으로 

재현함으로써 VR/AR 환경에서 실감형 촉각 피드백을 

제공할 수 있고, 스마트 제조 공정 모니터링, 재활 치료 

등 정밀한 접촉 감지가 필요한 다양한 분야에 적용될 수 

있다. 이렇듯 범용적인 촉각 지도 구현을 위해서는 

정확한 표면 재구성과 함께 물체 고유의 물리적 특성(예: 

강성)을 통합하고, 원격 환경에서도 안정적으로 데이터를 

송수신할 수 있도록 하는 기술이 필수적이다. 

이에 본 연구에서는 DeepJSCC (Deep Joint Source-

Channel Coding) 기반의 원격 촉각 지도 생성 

프레임워크를 제안한다. 촉각 데이터를 DeepJSCC 

인코더로 압축·정규화하여 무선 채널로 전송하고, 수신 

수신 심볼을 바탕으로 강성 정보를 추출·융합함으로써 

원격 환경에서도 정확한 촉각 지도를 구현한다. 

 

Ⅱ. 본론  

본 연구에서는 시뮬레이션 환경에 DIGIT 센서의 

물리적 특성을 모사하기 위해 TACTO 시뮬레이터를 

활용하였다 [2]. TACTO 는 물리 엔진 기반의 촉각 

시뮬레이션 플랫폼으로, 실제 DIGIT 센서의 접촉-영상 

변환 과정을 정밀하게 재현하여, 고해상도 흑백 

높이맵(heightmap) 이미지를 제공한다. 이를 기반으로 

한 원격 촉각 지도 생성 과정은 촉각 데이터 수집, 잠재 

표현 학습 및 복원, 표면 강성 (Stiffness) 분류의 세 

단계로 구성된다. 
 

1. 촉각 데이터 수집 

 물체 표면 상에 균일 분포로 선정된 𝑁 개 포인트에서 

촉각 데이터를 획득한다. 이때 𝑛  번째 센싱 지점에서는 

흑백 높이맵 𝑺𝑛 ∈ ℝ32×32 과 해당 지점의 센서 위치 및 

자세를 나타내는 𝒑𝑛 ∈ ℝ7  데이터를 함께 수집한다. 

최종적으로 𝑁 개의 센싱 지점에서 얻은 높이맵 데이터 

𝒮 = {𝑺1, 𝑺2, … , 𝑺𝑁} 과, 센서 포즈 데이터 𝒫 =

{𝒑1, 𝒑2, … , 𝒑𝑁}은 이후 처리 단계의 입력으로 활용된다. 
 

2. DeepJSCC 기반 잠재 표현 학습 및 복원 

각 센싱 지점의 높이맵 𝑺𝑛 은 인코더 𝑓𝐸(; 𝜃) 를 통해 

잠재 벡터 𝒙𝑛 ∈ ℂ𝑘로 압축 ·정규화되어 채널 입력 심볼로 

사용된다. 이때 수신 심볼 𝒚𝑛은 다음과 같다: 

𝒚𝑛 = 𝑯𝑛𝑥𝑛 + 𝒘𝑛. (1) 

여기서 𝑯𝑛 = diag(ℎ𝑛,1, … , ℎ𝑛,𝑘) ∈ ℂ𝑘×𝑘 는 복소 페이딩 

계수를 대각 성분으로 갖는 채널 행렬이며, 𝒘𝑛 ~  

𝒞𝒩(𝟎, 𝜎2𝑰𝑘)는 AWGN 노이즈이다. 수신단에서는 디코더 

𝑓𝐷(; 𝜙)에 수신 신호 𝒚𝑛을 입력하여 복원된 높이맵 𝑺̂𝑛을 

얻는다. 학습과정에서 복원 손실은 다음과 같다: 

𝐿rec =
1

𝑁
∑ ‖𝑺𝑛 − 𝑺̂𝑛‖

2𝑁
𝑛=1 . (2) 

 

3) 표면 강성 분류 

사전 학습된 인코더 𝑓𝐸(; 𝜃∗) 를 초기 특성 추출기로 

활용하고, 분류기 𝑔(; 𝜈)와 함께 미세 조정(fine-tuning)을 

수행한다. 이때 인코더 파라미터는 낮은 학습률로 

조정하여 복원 성능 저하를 최소화하도록 설계하였다. 



센싱 지점 𝑛의 강성 레이블 𝑘𝑛 ∈ {1, … , 𝐶}은 점진적 물리 

강도를 반영한 이산 후보 레벨 중 하나로 정의한다. 

분류기 𝑔(; 𝜈)는 수신 심볼 𝒚𝑛을 입력 받아 센싱 지점의 

강성 레벨을 예측하도록 한다. 지도 학습 환경에서 분류 

손실 𝐿cls는 다음과 같다: 

𝐿cls = −
1

𝑁
∑ ∑ 𝟏(𝑘𝑛 = 𝑐) log 𝑝̂𝑛,𝑐

𝐶
𝑐=1

𝑁
𝑛=1 . (3) 

여기서 𝑝̂𝑛,𝑐 는 샘플 𝑛 에 대해 분류기가 예측한 클래스 

𝑐의 확률 값이다. 

  

최종적으로 복원된 높이맵 집합 𝒮̂ = {𝑆̂1, … , 𝑆̂𝑁}과 사전 

기록된 센서 포즈 𝒫를 결합하여 전역 포인트 클라우드 

𝒳를 구성하고, 포아송 표면 재구성 기법 [3]을 통해 3D 

형상을 복원한다. 이어서 각 위치에 예측된 강성 레벨 

𝑘̂𝑛을 매핑하고, 센싱 되지 않은 영역은 가장 가까운 센싱 

지점의 𝑘̂𝑛 을 할당하여 형태와 강성이 통합된 3D 촉각 

지도를 완성한다. 

 

Ⅲ. 모의실험 

 본 연구는 YCB dataset [4]의 011_banana 모델을 

활용하고, Rayleigh 페이딩 채널을 가정하여 수행되었다. 

성능 평가는 3D 표면 복원 정확도와 강성 분류 정확도 

두 지표를 사용하였다. 두 지표 모두 원본 및 복원 3D 

표면에서 균일하게 100,000 포인트를 샘플링 하여 

측정한다. 표면 복원 정확도는 이 중 재구성 오차가 임계 

거리 𝜂  이하인 점의 비율이고, 강성 분류 정확도는 

분류기 예측 값 𝑘̂𝑛과 실제 레이블 𝑘𝑛의 일치 비율이다. 

 센싱 포인트 수 𝑁  을 100 에서 500 까지 늘려가며 

관찰한 결과(그림 2), 𝑁 = 100 에서는 복원 정확도는 약 

58%에 그쳤으나, 분류 정확도는 85%로 측정되었다. 

이후 𝑁 = 200에서 복원 정확도가 97% 이상으로 급격히 

향상되었고, 𝑁 = 500  에서 복원 정확도 99%, 분류 

정확도 98%를 달성하였다. 

다음으로 𝑁 = 500 고정한 상태에서 SNR 을 0 dB 에서 

20 dB 까지 변화시킨 실험(그림 3)에서는, SNR=0dB 에서 

복원 정확도는 35%, 분류 정확도 70%로 시작해 SNR 

10 dB 에서 두 지표 모두 91% 수준에 도달하였으며, 

SNR 20 dB 에서 약 98% 이상의 성능을 확보하였다. 

Ⅳ. 결론  

본 논문에서는 DeepJSCC 기반의 원격 촉각 지도 

생성 프레임워크를 제안하고, TACTO 시뮬레이터를 통해 

획득한 촉각 데이터를 이용해 복원 및 분류 성능을 

정량적으로 평가하였다. 그 결과, 센싱 포인트 수 𝑁 ≈

 500와 통신 품질 SNR ≥ 20 dB 조건 하에서 3D 형상 

복원과 표면 강성 분류를 동시에 최적화하여 완성도 

높은 촉각 지도를 생성할 수 있음을 확인하였다. 또한 

사전 학습된 DeepJSCC 인코더를 초기 특징 추출기로 

활용하고 분류기를 소량 미세 조정함으로써 복원과 분류 

두 과제를 하나의 통합된 네트워크로 효율적으로 수행할 

수 있음을 입증하였다. 이러한 통합적 접근은 실시간 

원격 촉각 응용에서 요구되는 높은 정확도와 안정성을 

동시에 만족시킬 수 있는 가능성을 제시한다. 
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그림 2 센싱 포인트 수에 따른 성능 변화 그림 3 SNR 에 따른 성능변화 
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그림 1무선 통신 기반 원격 촉각 지도 생성 파이프라인 


