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요 약

본 논문에서는 채널 임펄스 응답(channel impulse response : CIR)을 활용한 트랜스포머 기반 환경 센싱 알고리즘을 제안한다. 기존
radio SLAM (simultaneous localization and mapping) 기술은 거리, 각도와 같은 채널 파라미터를 추정하여 사용하나, 이 과정에서
데이터 손실, 잡음, 간섭 등의 문제가 발생한다. 이를 해결하기 위하여 본 논문은 전파의 원시 특성을 보존하는 CIR을 입력으로 활용하고,
시계열과 공간 정보를 효과적으로 처리할 수 있는 트랜스포머 모델을 이용하여 보다 정확한 환경 인식을 구현한다. 알고리즘 성능 검증을
위하여 벽과 전파 환경을 구성하고, ray-tracing 기반 시뮬레이션으로 생성한 CIR 이미지 데이터로 벽 위치 추정 정확도를 평가한다.
다른 딥러닝 모델과의 비교 결과 트랜스포머 기반 제안 알고리즘은 연산 시간은 다소 증가했으나 평균 89.3%의 정확도 향상을 보였으며,
이를 통하여 우수한 환경 인식 성능과 실효성을 확인한다.

Ⅰ. 서론

Radio SLAM(simultaneous localization and mapping)은 미지의

환경에서 전파 신호로 사용자의 위치를 추정하며, 동시에 주변

환경를 인지하는 기술이다 [1]. 지도 없이 수행하는 위치 추정은

환경에 대한 맥락 없이 일시적인 정보만 제공하지만, 환경을

인지하고 이를 바탕으로 위치를 추정하면 보다 정확한 결과를 얻을

수 있다 [2]. 기존 radio SLAM 연구는 거리, 각도와 같은 채널

파라미터 추정값을 활용하지만, 이러한 값들은 추정 과정에서 데이터

손실, 잡음, 간섭 등의 영향을 받아 신뢰도가 낮다. 이를 해결하기

위하여 본 논문에서는 전파의 원시 특성을 최대한 보존하는 채널

임펄스 응답(channel impulse response : CIR)을 활용하는

트랜스포머(transformer) 기반 환경 센싱 알고리즘을 제안한다. 이를

위하여 CIR을 시간 순으로 수집한 후 하나의 이미지 데이터로

통합하고, 단말(user equipment : UE)의 이동 경로 좌표값과 함께

트랜스포머에 입력하여 벽의 위치를 추정한다. 또한, 다른 딥러닝

모델과의 비교를 통하여 제안한 트랜스포머 기반 환경 센싱

알고리즘의 성능을 분석한다.

Ⅱ. 시스템 모델

본 논문에서는 단일 기지국(base station : BS)과 단일 UE를

고려한다. BS는 원점에 고정되어 있으며, UE는 차량에 탑재한

상황을 고려한다. 차량은 다음의 동적 모델에 따라 움직인다.

   G  (1)

여기서  는 시간 에서 UE가 탑재된 차량의 상태이며, 위치, 방향,

속도, 각속도, clock bias를 포함한다. G⋅는 상태 전이 함수이고,

는 공분산 행렬 에 대해 을 따르는 시간 에서의

프로세스 오차이다. BS에서 발생한 신호는 UE에 직접 도달하거나

벽, 가구, 사람 등의 표면에 반사될 수 있다. 반사된 신호는 반사면을

기준으로 BS를 대칭 이동시킨 점에서 발생한 것처럼 보이며, 이를

가상 앵커(virtual anchor : VA)라고 정의한다. 즉, 그림 1과 같이

실제 VA의 위치는 신호가 반사된 벽을 기준으로 BS의 대칭점으로

표현할 수 있다. BS에서 UE까지의 전파 경로를 기반으로 다중경로

채널을 모델링하고, 각 경로의 지연 시간과 채널 이득을 계산한 시간에서 CIR 는 다음과 같다.

  
  



    (2)

여기서 는 다중경로의 수, 는 번째 경로의 채널 이득,  는

번째 시간 지연을 나타내며,    는 Dirac’s delta

function이다.

Ⅲ. 트랜스포머 기반 환경 센싱 알고리즘

본 장에서는 트랜스포머 아키텍처의 인코더를 사용하는 환경 센싱

알고리즘을 제안한다. 먼저 그림 2와 같이 CIR 데이터 중 유의미한

값을 가지는 개 sample 구간의 magnitude를 수집하고, 이를 time

step 에 걸쳐 누적하여 하나의 2차원 이미지 형태로 통합한다.

통합한 CIR 이미지와 UE의 이동 경로 좌표를 입력값으로 사용하며

알고리즘을 통해 VA 위치를 추정한다. 입력 데이터에 임베딩을

반영하여 합친 는 트랜스포머 인코더에 전달되며, 다중 헤드

어텐션 메커니즘을 통해 시공간 상호 작용을 효과적으로 학습한다.

그림 1. 전파 기반 환경 센싱 예시



트랜스포머 encoder에서 출력된  ′∈ × 는 완전

연결층(full-connected layer : FCL)에서 위치 추정값 ∈ ×을

도출하며, 최종 출력층 FCL 모델은 아래와 같다.

   ′ , (3)

여기서, 는 위치 추정 네트워크이다. 제안 알고리즘은 손실함수를

최소화하는 방향으로 훈련되며, 손실함수는 아래와 같다.

  ∥ ∥, (4)

여기서 는 실제 VA 위치이며, 파라미터는 표 1과 같다.

Ⅳ. 시뮬레이션 결과 및 분석

환경 센싱 시뮬레이션을 위하여 100m×20m×20m 크기의 콘크리트

벽 1개를 임의로 배치하고, UE는 초기 위치

         ⊤에서 동적 모델(1)을

따라 이동하였다. 그리고, MATLAB ray-tracking[3]의 전파 환경은

3GPP 기고문[4, Sec. 6.1]의 Scenario 1. open office 파라미터를

기반으로 구축하였다. BS 안테나 높이는 3m, UE 안테나 높이는

1.5m, 캐리어 주파수는 30GHz, 전송 전력은 23dBm, 수신기 감도는

–100dBm, 시스템 손실은 0dB, ray의 최대 반사 횟수는 1회로

설정하였다. 전체 데이터 중 70%를 훈련에, 10%를 검증에, 20%를

성능 테스트에 사용했으며, 기타 매개변수는 표 2와 같다.

제안 알고리즘 성능을 평가하기 위하여 다른 딥러닝 모델과

비교하였으며, 표3은 각 모델에 따른 추정 오차 RMSE(root mean

squared error)와 계산 시간을 나타낸다. 비교 결과 제안 알고리즘은

0.036m로 가장 낮은 오차를, 0.54초로 가장 큰 연산 시간을

기록하였다. 이는 제안 알고리즘이 상대적으로 높은 연산 비용을

요구하지만, 정확도 면에서 가장 우수한 성능을 가짐을 보여준다.

Ⅴ. 결론

본 논문에서는 CIR을 활용한 트랜스포머 기반 환경 센싱

알고리즘을 제안하였다. 시간 순으로 수집한 CIR을 이미지 데이터로

통합하고, 이를 UE의 이동 경로 좌표와 함께 트랜스포머에 입력하여

VA 위치를 추정하였다. 다른 딥러닝 모델과 비교한 결과

트랜스포머를 이용한 제안 알고리즘이 DNN, CNN보다 계산 시간은

더 소요되지만 RMSE가 낮아 성능이 뛰어남을 확인하였다. 이를

통하여 CIR 데이터를 활용한 환경 센싱의 가능성을 검증하였다.
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그림 2 채널 임펄스 응답을 활용한 트랜스포머 기반 환경 센싱 알고리즘 구조도

Parameters Value
Number of Transformer layer 4

Number of Head 2

Activation function GeLu×4, linear

표 1. 환경 센싱 알고리즘 파라미터

Parameters Value
샘플 수  50
Time Step  40
전체 데이터 수 1,000
훈련 epoch 수 150

Learning rate 0.001

Batch size  32

표 2. 시뮬레이션 매개변수

모델 DNN CNN Proposed
RMSE [m] 1.78 0.186 0.036
Computation
Time [s]

0.13 0.15 0.54

표 3. 딥러닝 모델에 따른 추정 오차(RMSE)와 계산 시간


