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Abstract 

As the demand for GPU-accelerated computing continues to grow rapidly — driven by advances in artificial intelligence, scientific 

computing, and cloud services—efficient GPU resource management and scheduling have become increasingly vital. Unlike CPUs, 

GPUs are typically treated as monolithic units, posing significant challenges in resource sharing, particularly in multi-tenant and 

distributed environments. This often leads to resource underutilization, contention, and elevated operational costs. Existing GPU 

scheduling methods, including time-slicing, NVIDIA’s Multi-Process Service (MPS), and device partitioning via Multi-Instance GPU 

(MIG), offer partial solutions but introduce trade-offs related to performance isolation, resource fragmentation, and scheduling 

complexity. Furthermore, current job scheduling frameworks frequently lack the adaptability required to support dynamic and 

diverse AI workloads, especially those involving large-scale distributed training. In this paper, we present a comprehensive survey 

and analysis of GPU scheduling strategies, examining their advantages, limitations, and suitability for modern computing 

environments 

Ⅰ. Introduction 

Deep learning has become a core part of modern AI, driving innovation 

across various fields with its ability to learn complex patterns from large 

datasets. In healthcare, it enhances medical image analysis and disease 

prediction; in robotics, it supports real-time navigation and decision-

making. Natural language processing has seen major gains, enabling fluent 

language understanding and generation in tools like virtual assistants and 

translators. Deep learning also powers personalized recommendations in e-

commerce, entertainment, and social media. 

As deep learning models grow in size and complexity, with billions of 

parameters and massive data requirements, the demand for high-

performance GPUs has surged. GPUs are critical for accelerating 

computation but are traditionally treated as exclusive, monolithic resources, 

making efficient sharing difficult in multi-tenant and distributed 

environments like cloud platforms [1][3]. This often leads to resource 

contention, increased latency, and poor utilization. 

To address these issues, techniques such as time-slicing, NVIDIA’s 

Multi-Process Service (MPS), and Multi-Instance GPU (MIG) have been 

introduced [5]. Each offers partial solutions but comes with trade-offs: 

time-slicing may reduce isolation, MPS lacks flexibility, and MIG can lead 

to fragmentation and limited adaptability [4]. Existing schedulers also often 

overlook factors like memory patterns, communication overhead, and task 

dependencies, especially in large-scale AI workloads. These gaps hinder 

performance, efficiency, and scalability. 

This paper surveys current GPU scheduling strategies, analyzes their 

pros and cons, and outlines future challenges and directions. The overall 

structure of this survey is depicted in Figure 1. 

 

 
Figure 1: Overall structure of this survey 

 

 

Ⅱ. Existing GPU Scheduling Techniques 

A. Foundational Mechanisms for GPU Sharing 

Time-slicing [6] allows multiple workloads to share a single GPU by 

assigning each task a time slot for execution. This method uses context 

switching to simulate concurrency, but it can introduce overhead and lacks 

strong performance isolation. In Kubernetes, time-slicing can be 

implemented by creating GPU replicas, which are independently assigned to 

pods. Unlike NVIDIA's MIG, these replicas share memory and fault domains, 

but for many workloads, this lightweight sharing approach offers better 

GPU utilization than exclusive access. 

Multi-Instance GPU (MIG) [5], introduced with NVIDIA’s Ampere 

architecture, enables a single GPU to be partitioned into up to seven 

isolated instances, each with dedicated compute and memory resources. 

This allows multiple users or applications to run in parallel with strong 

performance and fault isolation—ideal for cloud and multi-tenant 

environments. MIG ensures predictable latency and throughput by assigning 

unique access to caches and memory controllers, improving GPU utilization 

for smaller or mixed workloads. It supports deployment on bare-metal, 

containers, and virtual machines, and integrates with orchestration tools 

like Kubernetes. 

 

Table 1: Comparison between Time-slicing, MIG and MPS 

Feature Time-slicing MIG MPS 

Isolation Weak (shared 

memory/fault 

domain) 

Strong (dedicated 

compute/memory) 

Limited (shared 

memory, partial 

isolation) 

Overhead 
High 

(context 

switching) 

 

Low Low 

Best use case Lightweight 

pod sharing in 

K8s 

Multi-tenant, 

predictable 

performance 

MPI-style 

coordinated 

workloads 

Concurrency 

Simulated 

(via time 

slots) 

 

True hardware-

level parallelism Kernel-level 

concurrency 

(via Hyper-

Q) 

 

K8s 

Integration Yes (via 

GPU 

replicas) 

 

Yes 

(native 

support) 

 

Limited/manual 

 

 

NVIDIA Multi-Process Service (MPS) [7] is a binary-compatible 

alternative implementation of the CUDA API designed to enable concurrent 

execution of cooperative multi-process CUDA applications—such as MPI-
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based jobs—on a single GPU. MPS leverages the Hyper-Q feature available 

on Kepler and newer NVIDIA GPUs to allow multiple CUDA kernels from 

different processes to be executed simultaneously, reducing idle time and 

improving utilization when a single application cannot fully saturate the 

GPU. While MPS enhances throughput and reduces context-switching 

overhead, it offers limited memory and fault isolation. As summarized in 

table 1, MPS is more suitable for coordinated workloads with less stringent 

isolation requirements. 

B. Advanced GPUs Scheduling Algorithms 

ASTRAEA is a GPU cluster scheduler designed to ensure Long-Term 

GPU-time Fairness (LTGF) among multiple tenants running distributed 

deep learning (DLT) jobs [8]. It introduces a lease-based training model, 

splitting long-running jobs into smaller sub-jobs to allow more dynamic 

scheduling and preemption. Its two-phase scheduling algorithm first selects 

tenants using a max-min fairness strategy, then schedules jobs within each 

tenant based on a job-fairness metric. By periodically returning jobs for 

lease renewal, ASTRAEA increases scheduling flexibility. Experiments 

show that ASTRAEA improves fairness without compromising GPU 

utilization or job performance. 

Two-Dimensional Attained Service-Based Scheduler (2DAS) is a GPU 

scheduling algorithm tailored for deep learning workloads with unknown job 

durations [9]. It extends traditional Least-Attained Service (LAS) and 

Gittins index policies to jointly account for the temporal (runtime) and 

spatial (number of GPUs used) dimensions of jobs, respecting their all-or-

nothing nature. 2DAS assigns priorities based on the service a job has 

received—favoring jobs that have consumed fewer resources under LAS, or 

those likely to finish soon using Gittins index when historical duration data 

is available. This adaptive approach improves fairness and efficiency in 

dynamic, uncertain GPU scheduling environments. 

As AI applications continue to expand, optimizing the throughput of 

online deep neural network (DNN) inference services becomes essential. 

Multi-Process Service (MPS) enables spatial GPU sharing but introduces 

challenges such as co-location interference, dynamic task arrivals with 

service-level objectives (SLOs), and resource fragmentation. To address 

these issues, the authors propose InSS (Intelligent Scheduling orchestrator 

for multi-GPU inference servers with Spatio-temporal Sharing) [10], a 

framework that maximizes system throughput while meeting SLOs. InSS 

incorporates an interference-aware latency model and a two-stage 

reinforcement learning (RL) scheduler to jointly optimize model placement, 

GPU resource allocation, and adaptive batch sizing. The scheduling problem 

is modeled as a Markov Decision Process (MDP), where decisions are 

guided by workload and GPU state. The hybrid action space (discrete and 

continuous) is tackled using RL techniques to overcome combinatorial 

complexity and convergence challenges. Experimental results show that 

InSS achieves up to 86% throughput improvement over state-of-the-art 

schedulers and scales effectively up to 64 GPUs, making it a promising 

solution for efficient DNN inference in modern GPU clusters. 

The Meta-RL-Based Worker Placement approach uses Meta-

Reinforcement Learning (Meta-RL) to optimize worker placement for data-

parallel deep learning (DL) jobs in GPU clusters, specifically targeting the 

allreduce architecture to minimize average job completion time [11]. The 

system consists of four components: environment, performance monitor, 

performance model, and scheduler. The scheduler places workers on GPUs 

based on real-time cluster/job states and rewards derived from training 

performance predictions. Using Proximal Policy Optimization (PPO) and 

actor-critic networks, the method adapts dynamically to real-time cluster 

conditions, improving sampling efficiency during training. Experiments 

show that this approach outperforms traditional heuristics, offering 

enhanced scheduling efficiency. 

E-LAS is an efficient online scheduler designed for distributed deep 

learning (DL) jobs in GPU clusters, aiming to minimize average job 

completion time (JCT) without requiring prior knowledge of job durations 

[12]. Unlike traditional methods, E-LAS utilizes real-time epoch progress 

rate—the ratio of completed epochs to attained service time—along with 

temporal and spatial resource usage to guide scheduling decisions. It 

prioritizes jobs based on both least attained service (LAS) and epoch 

progress, favoring faster or nearly completed jobs to reduce JCT. A 

lightweight placement algorithm enhances resource utilization with minimal 

overhead. Experimental results show that E-LAS improves JCT by 10× 

over Apache YARN and by 1.5× over Tiresias, the state-of-the-art DL 

scheduler, while being practical and easy to implement due to the simple 

tracking of epoch progress. 

Crux is a communication scheduler designed to improve GPU utilization 

for deep learning training (DLT) workloads, such as large language model 

training, in multi-tenant cloud clusters [13]. The system addresses 

communication contention, a major bottleneck that reduces GPU efficiency. 

Crux introduces the concept of GPU intensity, a metric that quantifies a 

job’s computation relative to its communication time and uses it to prioritize 

data flows. Through GPU intensity-aware path selection and priority 

assignment—while accounting for real-world network constraints—Crux 

reduces contention and improves resource use. Experiments on a 96-GPU 

testbed show up to 14.8% improvement in GPU utilization, and simulations 

using production traces show up to 23% improvement over existing 

schedulers like Sincronia and CASSINI. 

Ⅲ. Conclusion 

This paper reviewed various GPU scheduling techniques for deep 

learning workloads, focusing on solutions for efficient resource sharing in 

multi-tenant and distributed environments. Hardware-based methods like 

time-slicing, MIG, and MPS provide foundational approaches but have 

limitations in flexibility and efficiency. Advanced software-based 

techniques, such as ASTRAEA, 2DAS, Gandiva, and E-LAS, improve 

fairness, resource utilization, and job completion times through dynamic 

scheduling and real-time progress tracking. Deep reinforcement learning 

frameworks like Meta-RL-Based Worker Placement and SCHED2 offer 

adaptive, efficient solutions that optimize job placement and scheduling, 

outperforming traditional methods. These innovations highlight the need for 

more scalable, resource-efficient systems to meet the growing demands of 

AI workloads, with future research focusing on enhancing scalability, 

fairness, and GPU utilization in dynamic environments. Addressing the 

interplay between workload characteristics—such as memory access 

patterns, inter-job communication, and task dependencies—will be key to 

designing next-generation schedulers.  
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