

A Survey on GPU Scheduling Techniques for Efficient Resource Management in

Multi-Tenant and Distributed Environments

Thai Nguyen Duc Thong, Young Han Kim*

Soongsil University

thainguyen1309@dcn.ssu.ac.kr, younghak@.ssu.ac.kr*

Abstract

As the demand for GPU-accelerated computing continues to grow rapidly — driven by advances in artificial intelligence, scientific

computing, and cloud services—efficient GPU resource management and scheduling have become increasingly vital. Unlike CPUs,

GPUs are typically treated as monolithic units, posing significant challenges in resource sharing, particularly in multi-tenant and

distributed environments. This often leads to resource underutilization, contention, and elevated operational costs. Existing GPU

scheduling methods, including time-slicing, NVIDIA’s Multi-Process Service (MPS), and device partitioning via Multi-Instance GPU

(MIG), offer partial solutions but introduce trade-offs related to performance isolation, resource fragmentation, and scheduling

complexity. Furthermore, current job scheduling frameworks frequently lack the adaptability required to support dynamic and

diverse AI workloads, especially those involving large-scale distributed training. In this paper, we present a comprehensive survey

and analysis of GPU scheduling strategies, examining their advantages, limitations, and suitability for modern computing

environments

Ⅰ. Introduction

Deep learning has become a core part of modern AI, driving innovation

across various fields with its ability to learn complex patterns from large

datasets. In healthcare, it enhances medical image analysis and disease

prediction; in robotics, it supports real-time navigation and decision-

making. Natural language processing has seen major gains, enabling fluent

language understanding and generation in tools like virtual assistants and

translators. Deep learning also powers personalized recommendations in e-

commerce, entertainment, and social media.

As deep learning models grow in size and complexity, with billions of

parameters and massive data requirements, the demand for high-

performance GPUs has surged. GPUs are critical for accelerating

computation but are traditionally treated as exclusive, monolithic resources,

making efficient sharing difficult in multi-tenant and distributed

environments like cloud platforms [1][3]. This often leads to resource

contention, increased latency, and poor utilization.

To address these issues, techniques such as time-slicing, NVIDIA’s

Multi-Process Service (MPS), and Multi-Instance GPU (MIG) have been

introduced [5]. Each offers partial solutions but comes with trade-offs:

time-slicing may reduce isolation, MPS lacks flexibility, and MIG can lead

to fragmentation and limited adaptability [4]. Existing schedulers also often

overlook factors like memory patterns, communication overhead, and task

dependencies, especially in large-scale AI workloads. These gaps hinder

performance, efficiency, and scalability.

This paper surveys current GPU scheduling strategies, analyzes their

pros and cons, and outlines future challenges and directions. The overall

structure of this survey is depicted in Figure 1.

Figure 1: Overall structure of this survey

Ⅱ. Existing GPU Scheduling Techniques

A. Foundational Mechanisms for GPU Sharing

Time-slicing [6] allows multiple workloads to share a single GPU by

assigning each task a time slot for execution. This method uses context

switching to simulate concurrency, but it can introduce overhead and lacks

strong performance isolation. In Kubernetes, time-slicing can be

implemented by creating GPU replicas, which are independently assigned to

pods. Unlike NVIDIA's MIG, these replicas share memory and fault domains,

but for many workloads, this lightweight sharing approach offers better

GPU utilization than exclusive access.

Multi-Instance GPU (MIG) [5], introduced with NVIDIA’s Ampere

architecture, enables a single GPU to be partitioned into up to seven

isolated instances, each with dedicated compute and memory resources.

This allows multiple users or applications to run in parallel with strong

performance and fault isolation—ideal for cloud and multi-tenant

environments. MIG ensures predictable latency and throughput by assigning

unique access to caches and memory controllers, improving GPU utilization

for smaller or mixed workloads. It supports deployment on bare-metal,

containers, and virtual machines, and integrates with orchestration tools

like Kubernetes.

Table 1: Comparison between Time-slicing, MIG and MPS

Feature Time-slicing MIG MPS

Isolation Weak (shared

memory/fault

domain)

Strong (dedicated

compute/memory)

Limited (shared

memory, partial

isolation)

Overhead
High

(context

switching)

Low Low

Best use case Lightweight

pod sharing in

K8s

Multi-tenant,

predictable

performance

MPI-style

coordinated

workloads

Concurrency

Simulated

(via time

slots)

True hardware-

level parallelism Kernel-level

concurrency

(via Hyper-

Q)

K8s

Integration Yes (via

GPU

replicas)

Yes

(native

support)

Limited/manual

NVIDIA Multi-Process Service (MPS) [7] is a binary-compatible

alternative implementation of the CUDA API designed to enable concurrent

execution of cooperative multi-process CUDA applications—such as MPI-

mailto:younghak@.ssu.ac.kr*

based jobs—on a single GPU. MPS leverages the Hyper-Q feature available

on Kepler and newer NVIDIA GPUs to allow multiple CUDA kernels from

different processes to be executed simultaneously, reducing idle time and

improving utilization when a single application cannot fully saturate the

GPU. While MPS enhances throughput and reduces context-switching

overhead, it offers limited memory and fault isolation. As summarized in

table 1, MPS is more suitable for coordinated workloads with less stringent

isolation requirements.

B. Advanced GPUs Scheduling Algorithms

ASTRAEA is a GPU cluster scheduler designed to ensure Long-Term

GPU-time Fairness (LTGF) among multiple tenants running distributed

deep learning (DLT) jobs [8]. It introduces a lease-based training model,

splitting long-running jobs into smaller sub-jobs to allow more dynamic

scheduling and preemption. Its two-phase scheduling algorithm first selects

tenants using a max-min fairness strategy, then schedules jobs within each

tenant based on a job-fairness metric. By periodically returning jobs for

lease renewal, ASTRAEA increases scheduling flexibility. Experiments

show that ASTRAEA improves fairness without compromising GPU

utilization or job performance.

Two-Dimensional Attained Service-Based Scheduler (2DAS) is a GPU

scheduling algorithm tailored for deep learning workloads with unknown job

durations [9]. It extends traditional Least-Attained Service (LAS) and

Gittins index policies to jointly account for the temporal (runtime) and

spatial (number of GPUs used) dimensions of jobs, respecting their all-or-

nothing nature. 2DAS assigns priorities based on the service a job has

received—favoring jobs that have consumed fewer resources under LAS, or

those likely to finish soon using Gittins index when historical duration data

is available. This adaptive approach improves fairness and efficiency in

dynamic, uncertain GPU scheduling environments.

As AI applications continue to expand, optimizing the throughput of

online deep neural network (DNN) inference services becomes essential.

Multi-Process Service (MPS) enables spatial GPU sharing but introduces

challenges such as co-location interference, dynamic task arrivals with

service-level objectives (SLOs), and resource fragmentation. To address

these issues, the authors propose InSS (Intelligent Scheduling orchestrator

for multi-GPU inference servers with Spatio-temporal Sharing) [10], a

framework that maximizes system throughput while meeting SLOs. InSS

incorporates an interference-aware latency model and a two-stage

reinforcement learning (RL) scheduler to jointly optimize model placement,

GPU resource allocation, and adaptive batch sizing. The scheduling problem

is modeled as a Markov Decision Process (MDP), where decisions are

guided by workload and GPU state. The hybrid action space (discrete and

continuous) is tackled using RL techniques to overcome combinatorial

complexity and convergence challenges. Experimental results show that

InSS achieves up to 86% throughput improvement over state-of-the-art

schedulers and scales effectively up to 64 GPUs, making it a promising

solution for efficient DNN inference in modern GPU clusters.

The Meta-RL-Based Worker Placement approach uses Meta-

Reinforcement Learning (Meta-RL) to optimize worker placement for data-

parallel deep learning (DL) jobs in GPU clusters, specifically targeting the

allreduce architecture to minimize average job completion time [11]. The

system consists of four components: environment, performance monitor,

performance model, and scheduler. The scheduler places workers on GPUs

based on real-time cluster/job states and rewards derived from training

performance predictions. Using Proximal Policy Optimization (PPO) and

actor-critic networks, the method adapts dynamically to real-time cluster

conditions, improving sampling efficiency during training. Experiments

show that this approach outperforms traditional heuristics, offering

enhanced scheduling efficiency.

E-LAS is an efficient online scheduler designed for distributed deep

learning (DL) jobs in GPU clusters, aiming to minimize average job

completion time (JCT) without requiring prior knowledge of job durations

[12]. Unlike traditional methods, E-LAS utilizes real-time epoch progress

rate—the ratio of completed epochs to attained service time—along with

temporal and spatial resource usage to guide scheduling decisions. It

prioritizes jobs based on both least attained service (LAS) and epoch

progress, favoring faster or nearly completed jobs to reduce JCT. A

lightweight placement algorithm enhances resource utilization with minimal

overhead. Experimental results show that E-LAS improves JCT by 10×

over Apache YARN and by 1.5× over Tiresias, the state-of-the-art DL

scheduler, while being practical and easy to implement due to the simple

tracking of epoch progress.

Crux is a communication scheduler designed to improve GPU utilization

for deep learning training (DLT) workloads, such as large language model

training, in multi-tenant cloud clusters [13]. The system addresses

communication contention, a major bottleneck that reduces GPU efficiency.

Crux introduces the concept of GPU intensity, a metric that quantifies a

job’s computation relative to its communication time and uses it to prioritize

data flows. Through GPU intensity-aware path selection and priority

assignment—while accounting for real-world network constraints—Crux

reduces contention and improves resource use. Experiments on a 96-GPU

testbed show up to 14.8% improvement in GPU utilization, and simulations

using production traces show up to 23% improvement over existing

schedulers like Sincronia and CASSINI.

Ⅲ. Conclusion

This paper reviewed various GPU scheduling techniques for deep

learning workloads, focusing on solutions for efficient resource sharing in

multi-tenant and distributed environments. Hardware-based methods like

time-slicing, MIG, and MPS provide foundational approaches but have

limitations in flexibility and efficiency. Advanced software-based

techniques, such as ASTRAEA, 2DAS, Gandiva, and E-LAS, improve

fairness, resource utilization, and job completion times through dynamic

scheduling and real-time progress tracking. Deep reinforcement learning

frameworks like Meta-RL-Based Worker Placement and SCHED2 offer

adaptive, efficient solutions that optimize job placement and scheduling,

outperforming traditional methods. These innovations highlight the need for

more scalable, resource-efficient systems to meet the growing demands of

AI workloads, with future research focusing on enhancing scalability,

fairness, and GPU utilization in dynamic environments. Addressing the

interplay between workload characteristics—such as memory access

patterns, inter-job communication, and task dependencies—will be key to

designing next-generation schedulers.

ACKNOWLEDGMENT

This work was supported by Institute of Information & Communications Technology

Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)(RS-

2024-00398379, Development of High Available and High Performance 6G Cross

Cloud Infrastructure Technology)

REFERENCES

[1] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang, “Analysis of

Large-Scale Multi-Tenant GPU clusters for DNN training workloads” 2019 USENIX

Annual Technical Conference (USENIX ATC 19), 2019

[2] W. Gao et al., “Deep Learning workload scheduling in GPU Datacenters: Taxonomy,

challenges and vision” arXiv Preprint arXiv:2205.11913, May 2022

[3] P. Yu and M. Chowdhury, “Fine-Grained GPU sharing primitives for deep learning

applications,” Proceedings of Machine Learning and Systems, Mar. 2020.

[4] Q. Weng et al., “Beware of fragmentation: Scheduling GPU-Sharing workloads with

fragmentation gradient descent,” 2023 USENIX Annual Technical Conference

(USENIX ATC 23), 2023.

[5] “Introduction — NVIDIA Multi-Instance GPU User Guide r570 documentation.”

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/ (accessed May 02, 2025).

[6] “Time-Slicing GPUs in kubernetes — NVIDIA GPU Operator.”

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html

(accessed May 02, 2025).

[7] “Multi-Process service.” https://docs.nvidia.com/deploy/mps/index.html (accessed

May 02, 2025).

[8] Z. Ye et al., “ASTRAEA: A fair deep learning scheduler for Multi-Tenant GPU

clusters,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.

2781– 2793, Dec. 2021, doi: 10.1109/tpds.2021.3136245.

[9] J. Gu et al., “Tiresias: A GPU Cluster Manager for Distributed Deep Learning” Open

Access Media, pp. 485– 500, Jan. 2019

[10] Z. Han, R. Zhou, C. Xu, Y. Zeng, and R. Zhang, “InSS: An Intelligent Scheduling

Orchestrator for Multi-GPU Inference with Spatio-Temporal Sharing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 35, no. 10, pp. 1735– 1748, Jul.

2024, doi: 10.1109/tpds.2024.3430063.

[11] J. Yang, L. Bao, W. Liu, R. Yang, and C. Q. Wu, “On a meta Learning-Based

scheduler for deep learning clusters” IEEE Transactions on Cloud Computing, vol. 11,

no. 4, pp. 3631– 3642, Aug. 2023, doi: 10.1109/tcc.2023.3308161.

[12] A. Sultana, L. Chen, F. Xu, and X. Yuan, “E-LAS: Design and Analysis of Completion-

Time Agnostic Scheduling for Distributed Deep Learning Cluster” Association for

Computing Machinery, Aug. 2020, doi: 10.1145/3404397.3404415.

[13] J. Cao et al., “Crux: GPU-Efficient Communication Scheduling for Deep Learning

Training,” Association for Computing Machinery, pp. 1– 15, Jul. 2024, doi:

10.1145/3651890.3672239.

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.nvidia.com/deploy/mps/index.html

