A Survey on GPU Scheduling Techniques for Efficient Resource Management in
Multi-Tenant and Distributed Environments

Thai Nguyen Duc Thong, Young Han Kim#*

Soongsil University

thainguyen1309@dcn.ssu.ac.kr, younghak@.ssu.ac.krx

Abstract

As the demand for GPU-accelerated computing continues to grow rapidly — driven by advances in artificial intelligence, scientific

computing, and cloud services—efficient GPU resource management and scheduling have become increasingly vital. Unlike CPUs,

GPUs are typically treated as monolithic units, posing significant challenges in resource sharing, particularly in multi-tenant and
distributed environments. This often leads to resource underutilization, contention, and elevated operational costs. Existing GPU
scheduling methods, including time-slicing, NVIDIA's Multi-Process Service (MPS), and device partitioning via Multi-Instance GPU
(MIG), offer partial solutions but introduce trade-offs related to performance isolation, resource fragmentation, and scheduling
complexity. Furthermore, current job scheduling frameworks frequently lack the adaptability required to support dynamic and

diverse Al workloads, especially those involving large-scale distributed training. In this paper, we present a comprehensive survey

and analysis of GPU scheduling strategies, examining their advantages, limitations, and suitability for modern computing

environments

I . Introduction

Deep learning has become a core part of modern Al, driving innovation
across various fields with its ability to learn complex patterns from large
datasets. In healthcare, it enhances medical image analysis and disease
prediction; in robotics, it supports real-time navigation and decision—
making. Natural language processing has seen major gains, enabling fluent
language understanding and generation in tools like virtual assistants and
translators. Deep learning also powers personalized recommendations in e—
commerce, entertainment, and social media.

As deep learning models grow in size and complexity, with billions of
parameters and massive data requirements, the demand for high-
performance GPUs has surged. GPUs are critical for accelerating

computation but are traditionally treated as exclusive, monolithic resources,

making efficient sharing difficult in multi-tenant and distributed
environments like cloud platforms [1][3]. This often leads to resource
contention, increased latency, and poor utilization.

To address these issues, techniques such as time-slicing, NVIDIA’s
Multi-Process Service (MPS), and Multi-Instance GPU (MIG) have been
introduced [5]. Each offers partial solutions but comes with trade-offs:
time-slicing may reduce isolation, MPS lacks flexibility, and MIG can lead
to fragmentation and limited adaptability [4]. Existing schedulers also often
overlook factors like memory patterns, communication overhead, and task
dependencies, especially in large-scale Al workloads. These gaps hinder
performance, efficiency, and scalability.

This paper surveys current GPU scheduling strategies, analyzes their
pros and cons, and outlines future challenges and directions. The overall
structure of this survey is depicted in Figure 1.

GPU Scheduling Techniques

! l

___| Foundation Mechanisms for Advanced GPUs

GPU Sharing [Scheduling Aigorithms
Multi-Process Service » ASTREEA [8]
(MPS)
Multi-instance GPU b 2DAS (9]
I
(MIG) (5]
e 1SS [10]
L TimeSicing(6) ges Lo
Meta-RL-Based Scheduler
m
b E-LAS[12]
» Crux [13)

Figure 1. Overall structure of this survey

II. Existing GPU Scheduling Techniques

A. Foundational Mechanisms for GPU Sharing

Time-slicing [6] allows multiple workloads to share a single GPU by
assigning each task a time slot for execution. This method uses context
switching to simulate concurrency, but it can introduce overhead and lacks
strong performance isolation. In Kubernetes, time-slicing can be
implemented by creating GPU replicas, which are independently assigned to
pods. Unlike NVIDIA's MIG, these replicas share memory and fault domains,
but for many workloads, this lightweight sharing approach offers better
GPU utilization than exclusive access.

Multi-Instance GPU (MIG) [5], introduced with NVIDIA's Ampere
architecture, enables a single GPU to be partitioned into up to seven
isolated instances, each with dedicated compute and memory resources.
This allows multiple users or applications to run in parallel with strong
performance and fault isolation—ideal for cloud and multi-tenant
environments. MIG ensures predictable latency and throughput by assigning
unique access to caches and memory controllers, improving GPU utilization
for smaller or mixed workloads. It supports deployment on bare-metal,
containers, and virtual machines, and integrates with orchestration tools
like Kubernetes.

Table 1° Comparison between Time=-slicing, MIG and MPS

Feature Time-slicing MIG MPS
Isolation Weak (shared Strong (dedicated Limited (shared
memory/fault compute/memory) memory, partial
domain) isolation)
Overhead Low Low
High
(context
switching)
Best use case Lightweight Multi-tenant, MPI-style
pod sharing in predictable coordinated
K8s performance workloads
Concurrency True hardware—
level parallelism Kernel-level
Simulated concurrency
(via time (via Hyper-
slots) Q
K8s Limited/manual
Integration Yes (via Yes
GPU (native
replicas) support)

NVIDIA Multi-Process Service (MPS) [7] is a binary-compatible
alternative implementation of the CUDA API designed to enable concurrent
execution of cooperative multi-process CUDA applications—such as MPI-

mailto:younghak@.ssu.ac.kr*

based jobs—on a single GPU. MPS leverages the Hyper-Q feature available
on Kepler and newer NVIDIA GPUs to allow multiple CUDA kernels from
different processes to be executed simultaneously, reducing idle time and
improving utilization when a single application cannot fully saturate the
GPU. While MPS enhances throughput and reduces context-switching
overhead, it offers limited memory and fault isolation. As summarized in
table 1, MPS is more suitable for coordinated workloads with less stringent
isolation requirements.

B, Advanced GPUs Scheduling Algorithms

ASTRAEA is a GPU cluster scheduler designed to ensure Long-Term
GPU-time Fairness (LTGF) among multiple tenants running distributed
deep learning (DLT) jobs [8]. It introduces a lease—based training model,
splitting long-running jobs into smaller sub-jobs to allow more dynamic
scheduling and preemption. Its two—phase scheduling algorithm first selects
tenants using a max-min fairness strategy, then schedules jobs within each
tenant based on a job-fairness metric. By periodically returning jobs for
lease renewal, ASTRAEA increases scheduling flexibility. Experiments
show that ASTRAEA improves fairness without compromising GPU
utilization or job performance.

Two-Dimensional Attained Service-Based Scheduler (2DAS) is a GPU
scheduling algorithm tailored for deep learning workloads with unknown job
durations [9]. It extends traditional Least-Attained Service (LAS) and
Gittins index policies to jointly account for the temporal (runtime) and
spatial (number of GPUs used) dimensions of jobs, respecting their all-or-
nothing nature. 2DAS assigns priorities based on the service a job has
received—favoring jobs that have consumed fewer resources under LAS, or
those likely to finish soon using Gittins index when historical duration data
is available. This adaptive approach improves fairness and efficiency in
dynamic, uncertain GPU scheduling environments.

As Al applications continue to expand, optimizing the throughput of
online deep neural network (DNN) inference services becomes essential.
Multi-Process Service (MPS) enables spatial GPU sharing but introduces
challenges such as co-location interference, dynamic task arrivals with
service-level objectives (SLOs), and resource fragmentation. To address
these issues, the authors propose InSS (Intelligent Scheduling orchestrator
for multi-GPU inference servers with Spatio—temporal Sharing) [10], a
framework that maximizes system throughput while meeting SLOs. InSS
incorporates an interference-aware latency model and a two-stage
reinforcement learning (RL) scheduler to jointly optimize model placement,
GPU resource allocation, and adaptive batch sizing. The scheduling problem
is modeled as a Markov Decision Process (MDP), where decisions are
guided by workload and GPU state. The hybrid action space (discrete and
continuous) is tackled using RL techniques to overcome combinatorial
complexity and convergence challenges. Experimental results show that
InSS achieves up to 86% throughput improvement over state—of-the-art
schedulers and scales effectively up to 64 GPUs, making it a promising
solution for efficient DNN inference in modern GPU clusters.

The Meta-RL-Based Worker Placement approach uses Meta-
Reinforcement Learning (Meta-RL) to optimize worker placement for data-
parallel deep learning (DL) jobs in GPU clusters, specifically targeting the
allreduce architecture to minimize average job completion time [11]. The
system consists of four components: environment, performance monitor,
performance model, and scheduler. The scheduler places workers on GPUs
based on real-time cluster/job states and rewards derived from training
performance predictions. Using Proximal Policy Optimization (PPO) and
actor—critic networks, the method adapts dynamically to real-time cluster
conditions, improving sampling efficiency during training. Experiments
show that this approach outperforms traditional heuristics, offering
enhanced scheduling efficiency.

E-LAS is an efficient online scheduler designed for distributed deep
learning (DL) jobs in GPU clusters, aiming to minimize average job
completion time (JCT) without requiring prior knowledge of job durations
[12]. Unlike traditional methods, E-LAS utilizes real-time epoch progress
rate—the ratio of completed epochs to attained service time—along with
temporal and spatial resource usage to guide scheduling decisions. It
prioritizes jobs based on both least attained service (LAS) and epoch
progress, favoring faster or nearly completed jobs to reduce JCT. A
lightweight placement algorithm enhances resource utilization with minimal
overhead. Experimental results show that E-LAS improves JCT by 10x
over Apache YARN and by 1.5% over Tiresias, the state-of-the-art DL
scheduler, while being practical and easy to implement due to the simple
tracking of epoch progress.

Crux is a communication scheduler designed to improve GPU utilization
for deep learning training (DLT) workloads, such as large language model

training, in multi-tenant cloud clusters [13]. The system addresses
communication contention, a major bottleneck that reduces GPU efficiency.
Crux introduces the concept of GPU intensity, a metric that quantifies a
job’s computation relative to its communication time and uses it to prioritize
data flows. Through GPU intensity-aware path selection and priority
assignment—while accounting for real-world network constraints—Crux
reduces contention and improves resource use. Experiments on a 96-GPU
testbed show up to 14.8% improvement in GPU utilization, and simulations
using production traces show up to 23% improvement over existing
schedulers like Sincronia and CASSINI.

II. Conclusion

This paper reviewed various GPU scheduling techniques for deep
learning workloads, focusing on solutions for efficient resource sharing in
multi-tenant and distributed environments. Hardware-based methods like
time-slicing, MIG, and MPS provide foundational approaches but have
limitations in flexibility and efficiency. Advanced software-based
techniques, such as ASTRAEA, 2DAS, Gandiva, and E-LAS, improve
fairness, resource utilization, and job completion times through dynamic
scheduling and real-time progress tracking. Deep reinforcement learning
frameworks like Meta-RL-Based Worker Placement and SCHEDZ offer
adaptive, efficient solutions that optimize job placement and scheduling,
outperforming traditional methods. These innovations highlight the need for
more scalable, resource—efficient systems to meet the growing demands of
Al workloads, with future research focusing on enhancing scalability,
fairness, and GPU utilization in dynamic environments. Addressing the
interplay between workload characteristics—such as memory access
patterns, inter—job communication, and task dependencies—will be key to
designing next—-generation schedulers.

ACKNOWLEDGMENT

This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT)(RS-
2024-00398379, Development of High Available and High Performance 6G Cross
Cloud Infrastructure Technology)

REFERENCES

[1] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang, “Analysis of
Large-Scale Multi-Tenant GPU clusters for DNN training workloads” 2019 USENIX
Annual Technical Conference (USENIX ATC 19), 2019

[2] W. Gao et al., “Deep Learning workload scheduling in GPU Datacenters: Taxonomy,
challenges and vision” arXiv Preprint arXiv:2205.11913, May 2022

[3] P. Yu and M. Chowdhury, “Fine-Grained GPU sharing primitives for deep learning
applications,” Proceedings of Machine Learning and Systems, Mar. 2020.

[4] Q. Weng et al., “Beware of fragmentation: Scheduling GPU-Sharing workloads with
fragmentation gradient descent,” 2023 USENIX Annual Technical Conference
(USENIX ATC 23), 2023.

[5] “Introduction — NVIDIA Multi-Instance GPU User Guide r570 documentation.”
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/ (accessed May 02, 2025).

[6] “Time-Slicing GPUs in kubernetes — NVIDIA GPU Operator.”
https://docs.nvidia.com/datacenter/cloud -native/gpu-operator/latest/gpu-sharing.html
(accessed May 02, 2025).

[7] “Multi-Process service.” https://docs.nvidia.com/deploy/mps/index.html (accessed
May 02, 2025).

[8] Z. Ye et al., “ASTRAEA: A fair deep learning scheduler for Multi-Tenant GPU
clusters,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2781~ 2793, Dec. 2021, doi: 10.1109/tpds.2021.3136245.

[9]1]. Gu et al., “Tiresias: A GPU Cluster Manager for Distributed Deep Learning” Open
Access Media, pp. 485- 500, Jan. 2019

[10] Z. Han, R. Zhou, C. Xu, Y. Zeng, and R. Zhang, “InSS: An Intelligent Scheduling
Orchestrator for Multi-GPU Inference with Spatio-Temporal Sharing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 10, pp. 1735- 1748, Jul.
2024, doi: 10.1109/tpds.2024.3430063.

[11]1J. Yang, L. Bao, W. Liu, R. Yang, and C. Q. Wu, “On a meta Learning-Based
scheduler for deep learning clusters” IEEE Transactions on Cloud Computing, vol. 11,
no. 4, pp. 3631~ 3642, Aug. 2023, doi: 10.1109/tcc.2023.3308161.

[12] A. Sultana, L. Chen, F. Xu, and X. Yuan, “E-LAS: Design and Analysis of Completion-
Time Agnostic Scheduling for Distributed Deep Learning Cluster” Association for
Computing Machinery, Aug. 2020, doi: 10.1145/3404397.3404415.

[13]]. Cao et al., “Crux: GPU-Efficient Communication Scheduling for Deep Learning
Training,” Association for Computing Machinery, pp. 1- 15, Jul. 2024, doi:
10.1145/3651890.3672239.

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.nvidia.com/deploy/mps/index.html

