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요 약

본 논문은 공면상에서 센서의 위치를 추정하는 선형 최소제곱법 기반의 위치 추정 문제에서, 앵커의 공간적 배치가 추정
정확도에 미치는 영향을 분석하고 이를 최적화하는 방법을 제안한다. 센서의 위치 추정 오차 중 x축과 y축 방향의 분산을
각각 수치적으로 계산하고, 단위원, 사각형과 같은 특정한 구역 내에서 이 분산을 최소화할 수 있는 앵커의 최적 배치를
도출하였다. 최적화 알고리즘으로는 Quantum-behaved Particle Swarm Optimization(QPSO)을 사용하였다. 시뮬레이션을
통해 제약 공간 내에서의 무작위 배치에서의 오차 분산 측정 결과와 비교한 결과 제안한 배치가 추정 정확도에서 우수한
성능을 보였다. 본 연구는 공면상 센서 네트워크 설계 시 앵커 배치 최적화에 실질적인 기준을 제공하였다.

Ⅰ. 서 론

거리 기반 센서 위치 추정은 다양한 실세계 응용에서 핵심적인 기술로

활용되고 있다. 3차원에서의 정확한 위치 추정을 위해서는 최소 4개 이상

의 공면상에 놓이지 않은 센서가 필요하다. [1] 센서가 공간상에 잘 분산

되지 않을 경우, 분산되지 않은 방향으로의 추정 정확도가 감소한다. [2]

특히센서가동일평면또는곡면위에존재하는경우좌표의추정자체가

실패한다. 그러나 비용과 물리적 한계와 같은 현실적 요소로 인해 센서를

설치할 수있는 위치는 매우한정된다. 특히 센서를 z축 방향으로잘 분포

되도록 설치하는 것은 더욱 그렇다. 따라서 현실적 한계를 고려하여 지상

에 배치된 센서를 사용하여 목표를 정확히 추정하는 것이 중요한 과제가

된다. 본 연구의 선행 연구에서는 Newton 알고리즘 기반의 최소제곱법을

이용하여, 공면상에 놓인 센서로 목표의 위치를 안정적으로 추정하는 방

법을 제안한 바 있다. [3] 하지만 선행연구에서 위치 추정의 핵심 변수인

앵커의 기하학적 배치(geometry)가 전체 추정 정확도, 특히 오차 분산에

미치는 영향은 정량적으로 다루어지지 않았다.

본 논문에서는 앵커가 동일 공면상에 존재할 때, x 및 y 방향의 위치 추

정분산을수치적으로계산하고, 이를 통해좌표추정 전체의 오차를 최소

화하는앵커의최적배치조건을유도하였다. 이를 통해앵커배치가위치

추정 정확도에 미치는 영향을 정량적으로 평가할 수 있으며, 실제 시스템

에서의 배치 전략 설계에 실질적인 기준을 제공한다.

본 연구의주요기여는다음과같다. 첫째, 공면상센서위치추정문제에

서 위치 오차의 분산(Var)을 계산 가능한 형태로 정식화하였다. 둘째, 수

치 계산과 Quantum-behaved Swarm Optimization(QPSO) 기법을 통해

추정 오차가 최소가 되는 앵커의 최적 배치 조건을 도출하였다. 셋째, 시

뮬레이션을 통해 제안한 배치가 기존 기법보다 낮은 오차 분산을 달성함

을 확인하였다.

Ⅱ. 시스템 모델

배치된 위치를알고있는 N+1 개의 센서가있고, 이때 목표의 위치는모

른다고 가정한다. 위치를 알고 있는 각 i번째 센서와 해당 센서의 x, y, z

좌표를          ⋯ ,목표의 위치를 x  xtytztT
으로 정의한다. i번째 센서와 목표 간의 실제 거리를 , 센서가 측정한

노이즈를 포함한 거리 데이터를라고 할 때 각각을 다음 수식들과 같이

표현할 수 있다.

                ⋯ (1)

         ⋯ (2)

본 논문에서는 각 거리 측정값의 노이즈 가  ∼를 따르는

i.i.d. 샘플이라고 가정한다. 추정한 목표의 위치를 x  xtytztT 라

고 하며, 이 추정한 목표의 위치는 (1)의 식에서 를 로 대체하고, 기

준 센서(본 논문에서는 i=0 을 기준 센서로 사용하였음)의 거리 방정식

을 다른 센서가 측정한 거리 방정식에 대해 차분하여 최소제곱법을 풂으

로써 얻을 수 있다.

 
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⋮∥∥∥∥ (3)
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⋮∥∥∥∥ (5)

     ⋯      ⋯      ⋯
(6)

 xb (7)

그러나 모든 센서가 지상에 배치된 경우, 즉 x-y 평면에 놓인 경우 각 센

서의 모든 z 좌표가 동일하게 되어 행렬 A가 ill-conditioned하게 된

다. 이처럼 센서가 공면상에 놓였을 때는 행렬 A가 invertible 하지 않

아 일반적인 최소제곱법을 사용해 목표의 좌표를 추정할 수 없게 된다.

하지만 특정 평면에 놓인 센서가 해당 평면에 대해서는 충분히 잘 분산

되어있다고 가정할 경우, pseudo-inversion을 사용하여 잔존하는 축

에 대한 목표의 위치는 안정적으로 추정할 수 있다. 본 연구에서는 지상에

배치된 센서 배치의 최적화를 다루므로, 모든 센서가 x-y 평면상에 놓여

있음을 가정한다. 목표의 x,y 좌표는 여전히 추정할 수 있으므로 이를 이

용하여 목표의 좌표를 추정할 수 있다.

    ∥∥∥∥〈 〉
  
  ∥∥  〈 〉       (8)

  ∥∥∥∥〈 〉
  
 ∥∥  〈  〉       (9)

  ±   
     (10)

이 때  ⋯  ⋯이다. 추정된 z의 부호는 목표

가 존재할 수 있는 공간정보를 활용하여 확정할 수 있다. [4] 이 방법을

통해 추정한 x,y,z 좌표는 [4]에서 나온 Direct Method 방법을 통해

얻은 추정값과 동일하다. 위의 수식을 활용하여, 추정오차의 분산을 계산

할 수 있다.

      ∥∥∥∥〈  〉
∥∥〈  〉  

∥∥∥∥〈  〉
  
  ∥∥  〈  〉    (11)

    ∥∥∥∥〈  〉
∥∥〈 〉  

∥∥∥∥〈  〉
  
 ∥∥  〈  〉    (12)

    ≈    
          

      for  ≫  (13)

 
   

  (14)

센서의 최적 배치는 추정오차를 최소화하여야 한다. 그러나 제안한 방법

을 통해 얻는 추정오차는 목표와의 거리에 의해 크게 변한다. 목표의 위치

에 대한 사전정보를 추정 이전에는 얻을 수 없으므로 목표의 위치와 독립

적인 지표가 필요하다. 다행히도 센서가 지상에 배치된 경우, 목표의 높

이 가 충분히 커서  ≫ 를 만족한다고 볼 수 있다. 따라서 다음

의 등거리 가정을 적용할 수 있다.

   ≫      (15)

  for ≤  ≤ (16)

가정 하에서  의 추정오차는 대칭적이게 되어 목표 위치와 무관해진

다. 또한 식 (10)에 의해,  의 추정 오차는  의 추정오차에 의존하

므로   의 추정오차를 최소화하면 전체 추정오차를 최소화하게 된다.

따라서, 본 논문에서는  의 추정오차를 더하고   의 값으로

나눈 다음의 비용함수를 제안한다.

     
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 ∥∥∥∥〈〉
(18)

본 비용 함수는 앵커들이 x-y 평면상에 넓고 고르게 분포할수록 감소하

는 경향을 보인다. 그러나 실제 환경에서 앵커 위치가 x-y 평면에 무한히

퍼질 수 있다고 가정하는 것은 비현실적이며, 계산적으로도 부적절하다.

이에 본 연구에서는 앵커 위치가 단위원 상 또는 정해진 사각형 영역 내에

존재한다는 제한 조건 하에 최적화를 수행하였다. 또한 가 선형 종속

관계에 있을 경우 비용 함수가 발산하게 된다. 이러한 특이점이 포함된

배치는 최적화 과정에서 자동으로 제외되도록 알고리즘을 설계하였다.제

안된 비용 함수는 비선형적이며 고차원의 탐색 공간을 가지며, 특정 조건

에서 특이점(singularity)이 존재하는 등 수학적으로 폐쇄형 해(close

d-form solution)를 유도하기 어려운 구조를 가진다. 또한 본 비용 함

수는 회전 불변성을 가지므로 전역 최소값은 존재하지만 그 해는 유일하

지 않다. 즉 오차 분산을 최소화하는 최적 배치가 하나의 고정된 형태로

유일하게 존재하는 것이 아니라 동일한 비용을 갖는 여러 회전된 배치 형

태들이 존재할 수 있다. 이러한 이유 때문에 수학적 해석을 통한 명시적

최적해 도출은 매우 어렵다.

따라서 본 연구에서는 수치 기반의 전역 최적화 접근법으로, 휴리스틱

알고리즘인 Quantum-behaved Particle Swarm Optimization

(QPSO)를 적용하였다. [5] QPSO는 Particle Swarm Optimizat

ion를 확률적 모델에 기반하여 확장한 전역 최적화 기법으로, 적은 파라

미터 수로도 높은 수렴성과 탐색 성능을 보이는 것이 특징인 휴리스틱 모

델이다. 여러 연구에서 QPSO가 다양한 문제에 대해 전역 최적해에 안정

적으로 수렴하는 것으로 잘 알려져 있으며, 구현이 간단하면서도 효과적

인 성능을 보여주기 때문에 비용 함수 최적화에 활용하였다.

Ⅲ. 시뮬레이션 결과

본 시뮬레이션에서는 4개의 앵커를 x-y 평면의 특정한 제약공간 내에

배치하는 조건에서 비용함수를 최적화하였다. 실험에서 사용한 제약공간

두 가지는 각각 단위원 내 배치 조건( ≤)과 일정한 사각형 범



위 내(≤ ≤  ≤ ≤ ) 배치 조건이다.

최적화 알고리즘으로는 QPSO를 사용하였으며, 최대 반복 횟수는 200

회로 설정하였다. 초기 입자 위치는 제약공간 내에서 균등 분포로 무작위

생성하였다. 알고리즘의 수축 계수 는 최대 0.9에서 0.4까지 반복에 따

라 선형으로 감소하도록 설정하였다. 모든 시뮬레이션은 Matlab 환경에

서 구현되었다. 시뮬레이션을 통해 얻은 4개 센서에 대한 단위원 제약공

간 내의 최적 배치는 다음과 같다.


 

    
 

 
         (19)

다음은 4개 센서에 대한 사각형 제약 공간 내의 최적 배치를 나타낸다.


 

    



 

         (20)

마지막으로 센서 배치의 성능을 비교하기 위하여, 최적화된 센서 배치에

서 측정한 측정오차의 분산을 다른 제약공간 내의 랜덤한 100개의 배치

조건에서의 측정오차의 분산과 비교하였다. 측정오차의 분산을 추정하기

위해서, 각 배치 및 목표 조합마다 백만 번의 거리 측정을 수행한 몬테카

를로 시뮬레이션을 실행하였다. 거리 측정에는 평균 0, 분산 을 갖는 가

우시안 노이즈가 포함되었다. z 축 상의 고정된 높이의 단위원 위에 고르

게 분포되도록 7개의 목표를 배치하였다.

x  
 

 xk 


 

cos 
sin 


for k  ⋯ (21)

그림 3,4는 최적화된 배치(적색 실선)와 무작위 배치(청색 점선) 간의

오차 분산 비교 결과를 나타낸다. 최적화된 배치의 경우, 모든 목표 위치

에서 무작위 배치에서의 추정 결과보다 더낮은 오차 분산을 보임을 확인

할 수 있다.

Ⅳ. 결론

본 논문에서는 본 연구에서는 거리 기반 위치 추정 시스템에서 센서의

공간 배치가 추정 정확도에 미치는 영향을 정량적으로 분석하고, 오차 분

산을 최소화하는 최적의 센서 배치를 도출하기 위한 비용 함수를 제안하

였다. 이 비용함수는센서배치의기하학적특성을반영하여타깃위치와

무관하게 정의되었으며, 비선형성과 특이점 구조로 인해 수학적 해석이

어려운 구조를 가진다. 이에 따라 휴리스틱 최적화 기법인 QPSO를 활용

하여 최적배치를구하였다. 시뮬레이션결과, 제안한 최적배치는다양한

타깃 위치에서 무작위 배치에 비해 더 낮은 측정 오차 분산을 보이며, 앵

커 배치의 효과성을 입증하였다.
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