Federated Context Synchronization for Model Context Protocol Servers
in Multi—Cluster Kubernetes

Huan Le, Young Han Kim#*

Soongsil University

huanle@dcn.ssu.ac.kr, younghak@ssu.ac.kr*

Abstract

In modern Al-driven applications, Model Context Protocol (MCP) servers maintain dynamic,
stateful contexts—such as code, files, and configuration—that directly shape the behavior and
decisions of Al agents. Deploying and managing MCP servers across multi-cluster Kubernetes
environments introduces new challenges, particularly in ensuring consistent and synchronized
context states. Existing Kubernetes federation tools (e.g., Karmada) can distribute static CRDs but
lack support for real-time synchronization of evolving context, resulting in drift and inconsistent
inference. We propose a Kubernetes—native architecture featuring two custom resources:
FederatedContext on a central control plane and MCPContext on each workload cluster, and two
controllers: a Federated Context Controller that propagates context updates via Karmada’'s
PropagationPolicy, and an MCP Context Controller that applies them locally. By embedding context
synchronization directly into Kubernetes CRDs and controllers, our solution eliminates external
messaging layers while ensuring consistent context distribution across clusters, greatly simplifying

multi—cluster MCP server management.

I . Introduction

The Model Context Protocol (MCP) [1] is an open
standard that defines a secure, two-way interface
between Al models and external tools or data sources.
An MCP deployment comprises hosts (e.g., IDE
plugins or agent platforms), clients (LLM-backed
applications), and servers, where MCP servers
provide dynamic, stateful context in the form of
executable code modules, configuration files, static
resources such as documents and media assets, and
customizable prompts that guide model interactions.

As mentioned in [5], one of the key challenges of
MCP is scalability in multi-tenant environments. This
means that when MCP servers are deployed across
shared Kubernetes clusters, maintaining isolation,
performance, and context consistency becomes
increasingly difficult. Furthermore, the MCP server
lifecycle, which includes creation, operation, and
update phases, introduces additional complexity:
during updates, unsynchronized changes to tools,
resources, or prompts can lead to context drift across
clusters. This drift can undermine model behavior and
reliability. Although the MCP specification supports
basic context operations, it does not natively address
dynamic, multi—cluster synchronization, motivating the
need for a federated Kubernetes—native solution.

Several open—source projects address multi—cluster
orchestration for Kubernetes—most notably Karmada
[2]. Karmada provides a central control plane with
PropagationPolicy and ClusterPropagationPolicy CRDs
to replicate static resources (Deployments,
ConfigMaps, Secrets) across clusters. GitOps tools
such as ArgoCD [3] and Flux [4] can likewise deploy
identical manifests across clusters, but typically

operate at commit cadence rather than supporting
high—-frequency updates. None of these solutions were
designed to handle the dynamic, stateful context that
MCP servers require; they lack event—driven
synchronization for rapidly changing tools, resources,
and prompts.

Therefore, to address the lack of dynamic, multi—
cluster context synchronization for MCP servers, we
propose a Kubernetes—native architecture. Our design
introduces two custom resources: FederatedContext
at the control plane and MCPContext within each
workload cluster, and implements dedicated
controllers that use Karmada’s propagation engine to
achieve real-time, bidirectional synchronization of
MCP server contexts across clusters.

II. Method

In this section, we present our Kubernetes—native
method for real-time, bidirectional context
synchronization across MCP servers in multi—cluster
environments.

As illustrated in Figure 1, we first define two CRDs
to represent federated and local contexts, then
describe the Federated Context Controller and the
MCP Context Controller. Finally, we explain how
these components integrate with Karmada’'s
propagation engine to deliver low-latency updates
without external messaging layers.

A. Custom Resource Definitions

To encode context state declaratively, we introduce
two Kubernetes CustomResourceDefinitions (CRDs):
FederatedContext (Control Plane) and MCPContext
(Workload Cluster).

The FederatedContext CRD serves as the global,
source-of-truth representation of MCP context in the
control-plane cluster. Its spec includes an
“mcpServerName” (the target MCP server
deployment), a clusters list or selector to scope

propagation, a “‘contextType” field (“tools”,
“resources”, “prompts”), and a “contextPayload”
object containing the actual code modules,
configuration files, binary artifacts, or prompt

templates.

The MCPContext CRD, represents the localized
context state for an MCP server within a workload
cluster. It closely reflects the structure of
FederatedContext, including fields such as
mcpServerName (identifying the associated
Deployment or StatefulSet), contextType (“tools”,
“resources”, “prompts”), contextPayload (containing
the JSON-encoded data such as code modules,
configurations, binaries, or prompts), version (to track
changes), and timestamp (to mark the latest update
time).

Federated Context CRD Control plane

Resources

T

Watches / Updates

Federated Context MCP Context CRD K d
Controller ontex armada
r

Propagation CR

Workload Cluster A

Y
MCP Context CRD,
Tools
Resources
Prompts

L

Watches / Updates

MCP Context

Controller

Sync Context Sync Context

MCP Server A MCP Server B

Updale‘ context Update context
|

[v
¥ B BX & H

Tools Resources Prompts Tools Resources

Prompts |

Figure 1. Proposed Architecture for MCP Server
Context Synchronization.

B. Federated Context Controller

The Federated Context Controller watches
Federated Context objects in the control-plane cluster
and translates them into MCPContext instances for
propagation. Its responsibilities are: (1) watch for
changes to FederatedContext resources and translate
each spec into a corresponding MCPContext CR, (2)
generate or update a PropagationPolicy CR that
selects the new MCPContext and targets the specified
clusters, and (3) monitor propagation progress and
update the FederatedContext status (Pending, Applied,
or Error) accordingly.

C. MCP Context Controller

The MCP Context Controller runs in each workload
cluster and is responsible for managing local
MCPContext resources. Its primary tasks include: (1)
applying the MCPContext data to the corresponding
MCP server instance, such as updating local files,
configurations, or runtime states; (2) monitoring the
MCP server for any local context changes during the
server’'s operation or update phases; and (3) when a
local update occurs, using a remote Kubernetes API
client to patch the FederatedContext in the control-
plane cluster with the new context version and
timestamp. This ensures bidirectional synchronization
and maintains consistency across all clusters.

II. Conclusion

In this paper, we addressed the challenge of
dynamic, multi-cluster synchronization of MCP server
contexts in Kubernetes environments. Building on
existing federation tools, we proposed a Kubernetes—
native architecture featuring two custom resources—
FederatedContext and MCPContext—and designed
dedicated controllers for each layer. By leveraging
Karmada’s propagation engine and implementing a
remote patching mechanism, our architecture ensures
real-time, bidirectional synchronization of MCP server
contexts across clusters. In future work, we aim to
extend our design with conflict resolution strategies,
consistency guarantees, and security enhancements
for cross—cluster synchronization.

ACKNOWLEDGMENT

This work was supported by Institute of Information
& communications Technology Planning & Evaluation
(IITP) grants funded by the Korea government (MSIT)
(RS-2024-00398379, Development of High Available
and High Performance 6G Cross Cloud Infrastructure
Technology).

REFERENCES

[1] Introduction — Model context protocol. (n.d.-b). Model
Context Protocol. https.//modelcontextprotocol.io/

(2] Open, Multi-Cloud, Multi-Cluster Kubernetes
Orchestration | karmada. (n.d.). https://karmada.io/

[3]1 ARGO CD - Declarative GITOPS CD for kubernetes.
(n.d.). https://argo-cd.readthedocs.io/en/stable/

[4] Flux - the GitOps family of projects. (n.d.).
https://fluxcd.io/

[5] Hou, X., Zhao, Y., Wang, S., & Wang, H. (2025, March
30). Model Context Protocol (MCP): landscape, security
threats, and future research directions. arXiv.org.
https://arxiv.org/abs/2503.23278

[6] Custom resources. (2024, October 31). Kubernetes.
https://kubernetes.io/docs/concepts/extend=
kubernetes/api-extension/custom-resources/

https://modelcontextprotocol.io/
https://karmada.io/
https://argo-cd.readthedocs.io/en/stable/
https://arxiv.org/abs/2503.23278
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

