

Federated Context Synchronization for Model Context Protocol Servers

in Multi-Cluster Kubernetes

Huan Le, Young Han Kim*

Soongsil University

huanle@dcn.ssu.ac.kr, younghak@ssu.ac.kr*

Abstract

In modern AI-driven applications, Model Context Protocol (MCP) servers maintain dynamic,

stateful contexts—such as code, files, and configuration—that directly shape the behavior and

decisions of AI agents. Deploying and managing MCP servers across multi-cluster Kubernetes

environments introduces new challenges, particularly in ensuring consistent and synchronized

context states. Existing Kubernetes federation tools (e.g., Karmada) can distribute static CRDs but

lack support for real-time synchronization of evolving context, resulting in drift and inconsistent

inference. We propose a Kubernetes-native architecture featuring two custom resources:

FederatedContext on a central control plane and MCPContext on each workload cluster, and two

controllers: a Federated Context Controller that propagates context updates via Karmada’s

PropagationPolicy, and an MCP Context Controller that applies them locally. By embedding context

synchronization directly into Kubernetes CRDs and controllers, our solution eliminates external

messaging layers while ensuring consistent context distribution across clusters, greatly simplifying

multi-cluster MCP server management.

Ⅰ. Introduction

The Model Context Protocol (MCP) [1] is an open

standard that defines a secure, two-way interface

between AI models and external tools or data sources.

An MCP deployment comprises hosts (e.g., IDE

plugins or agent platforms), clients (LLM-backed

applications), and servers, where MCP servers

provide dynamic, stateful context in the form of

executable code modules, configuration files, static

resources such as documents and media assets, and

customizable prompts that guide model interactions.

As mentioned in [5], one of the key challenges of

MCP is scalability in multi-tenant environments. This

means that when MCP servers are deployed across

shared Kubernetes clusters, maintaining isolation,

performance, and context consistency becomes

increasingly difficult. Furthermore, the MCP server

lifecycle, which includes creation, operation, and

update phases, introduces additional complexity:

during updates, unsynchronized changes to tools,

resources, or prompts can lead to context drift across

clusters. This drift can undermine model behavior and

reliability. Although the MCP specification supports

basic context operations, it does not natively address

dynamic, multi-cluster synchronization, motivating the

need for a federated Kubernetes-native solution.

Several open-source projects address multi-cluster

orchestration for Kubernetes—most notably Karmada

[2]. Karmada provides a central control plane with

PropagationPolicy and ClusterPropagationPolicy CRDs

to replicate static resources (Deployments,

ConfigMaps, Secrets) across clusters. GitOps tools

such as ArgoCD [3] and Flux [4] can likewise deploy

identical manifests across clusters, but typically

operate at commit cadence rather than supporting

high-frequency updates. None of these solutions were

designed to handle the dynamic, stateful context that

MCP servers require; they lack event-driven

synchronization for rapidly changing tools, resources,

and prompts.

Therefore, to address the lack of dynamic, multi-

cluster context synchronization for MCP servers, we

propose a Kubernetes-native architecture. Our design

introduces two custom resources: FederatedContext

at the control plane and MCPContext within each

workload cluster, and implements dedicated

controllers that use Karmada’s propagation engine to

achieve real-time, bidirectional synchronization of

MCP server contexts across clusters.

Ⅱ. Method

In this section, we present our Kubernetes-native

method for real-time, bidirectional context

synchronization across MCP servers in multi-cluster

environments.

As illustrated in Figure 1, we first define two CRDs

to represent federated and local contexts, then

describe the Federated Context Controller and the

MCP Context Controller. Finally, we explain how

these components integrate with Karmada’s

propagation engine to deliver low-latency updates

without external messaging layers.

A. Custom Resource Definitions

To encode context state declaratively, we introduce

two Kubernetes CustomResourceDefinitions (CRDs):

FederatedContext (Control Plane) and MCPContext

(Workload Cluster).

The FederatedContext CRD serves as the global,

source-of-truth representation of MCP context in the

control-plane cluster. Its spec includes an

“mcpServerName” (the target MCP server

deployment), a clusters list or selector to scope

propagation, a “contextType” field (“tools”,

“resources”, “prompts”), and a “contextPayload”

object containing the actual code modules,

configuration files, binary artifacts, or prompt

templates.

The MCPContext CRD, represents the localized

context state for an MCP server within a workload

cluster. It closely reflects the structure of

FederatedContext, including fields such as

mcpServerName (identifying the associated

Deployment or StatefulSet), contextType (“tools”,

“resources”, “prompts”), contextPayload (containing

the JSON-encoded data such as code modules,

configurations, binaries, or prompts), version (to track

changes), and timestamp (to mark the latest update

time).

Figure 1. Proposed Architecture for MCP Server

Context Synchronization.

B. Federated Context Controller

The Federated Context Controller watches

Federated Context objects in the control-plane cluster

and translates them into MCPContext instances for

propagation. Its responsibilities are: (1) watch for

changes to FederatedContext resources and translate

each spec into a corresponding MCPContext CR, (2)

generate or update a PropagationPolicy CR that

selects the new MCPContext and targets the specified

clusters, and (3) monitor propagation progress and

update the FederatedContext status (Pending, Applied,

or Error) accordingly.

C. MCP Context Controller

The MCP Context Controller runs in each workload

cluster and is responsible for managing local

MCPContext resources. Its primary tasks include: (1)

applying the MCPContext data to the corresponding

MCP server instance, such as updating local files,

configurations, or runtime states; (2) monitoring the

MCP server for any local context changes during the

server’s operation or update phases; and (3) when a

local update occurs, using a remote Kubernetes API

client to patch the FederatedContext in the control-

plane cluster with the new context version and

timestamp. This ensures bidirectional synchronization

and maintains consistency across all clusters.

Ⅲ. Conclusion

In this paper, we addressed the challenge of

dynamic, multi-cluster synchronization of MCP server

contexts in Kubernetes environments. Building on

existing federation tools, we proposed a Kubernetes-

native architecture featuring two custom resources—

FederatedContext and MCPContext—and designed

dedicated controllers for each layer. By leveraging

Karmada’s propagation engine and implementing a

remote patching mechanism, our architecture ensures

real-time, bidirectional synchronization of MCP server

contexts across clusters. In future work, we aim to

extend our design with conflict resolution strategies,

consistency guarantees, and security enhancements

for cross-cluster synchronization.

ACKNOWLEDGMENT

This work was supported by Institute of Information

& communications Technology Planning & Evaluation

(IITP) grants funded by the Korea government (MSIT)

(RS-2024-00398379, Development of High Available

and High Performance 6G Cross Cloud Infrastructure

Technology).

REFERENCES

[1] Introduction - Model context protocol. (n.d.-b). Model
Context Protocol. https://modelcontextprotocol.io/

[2] Open, Multi-Cloud, Multi-Cluster Kubernetes

Orchestration | karmada. (n.d.). https://karmada.io/

[3] ARGO CD - Declarative GITOPS CD for kubernetes.

(n.d.). https://argo-cd.readthedocs.io/en/stable/

[4] Flux - the GitOps family of projects. (n.d.).

https://fluxcd.io/

[5] Hou, X., Zhao, Y., Wang, S., & Wang, H. (2025, March

30). Model Context Protocol (MCP): landscape, security
threats, and future research directions. arXiv.org.

https://arxiv.org/abs/2503.23278

[6] Custom resources. (2024, October 31). Kubernetes.

https://kubernetes.io/docs/concepts/extend-

kubernetes/api-extension/custom-resources/

https://modelcontextprotocol.io/
https://karmada.io/
https://argo-cd.readthedocs.io/en/stable/
https://arxiv.org/abs/2503.23278
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

