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Abstract

Distributed deep learning (DDL) on heterogeneous GPU/CPU clusters often faces significant
performance bottlenecks due to issues like load imbalance, communication overhead, and
inefficient hardware utilization. Recent systems have proposed effective strategies to address
these challenges and improve training efficiency in such environments. This survey reviews four
representative frameworks—BytePS, BytePS-Compress, Espresso, and StellaTrain—that have
shown strong performance and scalability, even on heterogeneous clusters, by leveraging
techniques such as decoupled communication, gradient compression, pipelining, and adaptive
hyperparameter tuning. We summarize the architectural designs, optimization techniques, and
discuss their applicability in real-world, resource—diverse infrastructures.

I . Introduction

The rapid growth of deep neural network (DNN)
complexity and massive datasets has necessitated the
development of large-scale distributed systems to
enable efficient training. However, optimizing model in
heterogeneous clusters, where diverse hardware
resources such as GPUs and CPUs are combined,
presents several challenges. Common issues may
include workload imbalance, communication overhead,
and hardware underutilization, which can severely
hinder training performance.

Over the past few years, several frameworks have
emerged to tackle such obstacles and accelerate
distributed training on multiple nodes. They leverage
various optimization strategies, such as decoupled
communication, gradient compression, pipelining, and
adaptive  hyperparameter tuning, to maximize
hardware effectiveness and minimize communication
bottlenecks.

In this survey, we provide an analysis of four
prominent frameworks—BytePS, BytePS-Compress,
Espresso, and StellaTrain—that have demonstrated
strong performance and scalability in heterogeneous
resources. We will discuss their architectural designs,
highlight their optimization approaches, and explore
their suitability and ease of integration in production—
level systems.

II. Frameworks
A. BytePS

BytePS [1] is a unified distributed framework
designed to speed up DNN training across clusters
with heterogeneous hardware components. The
BytePS architecture (Figure 1) has two main modules
- Summarization Service (SS) and Communication

Service (CS). SS performs the aggregation operations
on CPUs, while CS handles synchronization and
communication between servers. Thus, the system can
flexibly utilize CPU resources and network bandwidth,
ensuring optimal communication performance across
various server cluster configurations.
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Figure 1. BytePS architecture [1]
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In addition, BytePS [2] is open-source, and
although its core is implemented in C++ for general-
purpose use, it provides user-—friendly plugins for
major frameworks like TensorFlow, PyTorch, and
MXNet, enabling seamless integration with minimal
code changes.

B. BytePS-Compress

BytePS-Compress [3] is developed based on
BytePS [1] and utilizes a two-stage communication
process: the first stage is intra—node communication,
which performs All-Reduce [4] gradient operations
across GPUs using NVIDIA Collective Communication
Library; the second stage is inter—-node compression,
where gradients are exchanged with Parameter
Servers [5] over TCP or Remote Direct Memory
Access networks.

A key innovation in BytePS-Compress is the
integration of a novel adaptive gradient algorithm
called compressed LANS (CLAN), which enables
effective gradient compression while preserving the
benefits of adaptive optimization methods. By applying



different compression schemes for intra—-node and
inter-node communication, CLAN aligns well with the
underlying hardware characteristics. This approach
significantly reduces communication overhead while
preserving model accuracy and convergence speed,
making the system highly scalable for large-scale
distributed training.

C. Espresso

Espresso [6] aims to optimize training throughput in
compression—enabled DDL by selecting a near—
optimal compression strategy from a very large
search space using two main techniques. First, the
framework introduces a decision tree abstraction to
express all possible compression strategies for DDL
training jobs, along with empirical models that
estimate the time required for tensor computation,
communication, and compression. Second, an
algorithm is proposed by the authors to select a near-—
optimal compression strategy based on the previous
analysis. This strategy is then applied during training,
where the appropriate compression is performed on
each tensor as soon as its gradients are ready to be
communicated.

The entire process is illustrated in Figure 2, which
summarizes how Espresso integrates these techniques
into a complete compression—enabled distributed
training workflow.
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Figure 2. Espresso Overview [6]
D. StellaTrain

StellaTrain [7] is the pioneering distributed training
framework that holistically speeds up model training in
heterogeneous consumer-grade GPU clusters over a
WAN. StellaTrain achieves high training speeds
through two key techniques. First, it leverages cache-
aware gradient compression to optimize network
usage in low—bandwidth conditions, alongside a CPU-
based sparse optimizer to develop computationally
efficient methods for compression and optimization.
Second, StellaTrain implements layer—-wise partial
staleness, where some layers receive immediate
gradient updates while others are delayed by one
iteration, ensuring synchronized updates with minimal
staleness and interleaving gradient transfer with
computation.
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Figure 3. StellaTrain training pipeline [7]

Figure 3 illustrates the StellaTrain training pipeline,
in  which compression and optimization are
strategically offloaded to the CPU, while partial
staleness in gradient updates is carefully applied to
maximize GPU utilization. However, combining partial
staleness with gradient compression introduces new
challenges for StellaTrain, as convergence becomes
increasingly sensitive to batch size and compression
rate under fluctuating WAN bandwidth. To overcome
this limitation, StellaTrain dynamically adjusts these
hyperparameters using Bayesian Optimization and the
Nelder-Mead method. Several experimental results
further demonstrate that StellaTrain effectively adapts
its training strategy to varying network conditions and
surpasses BytePS [1], BytePS-Compress [3], and
Espresso [6] in minimizing Time-To—-Accuracy.

III. Conclusion

This survey examines four frameworks that
accelerate DDL across heterogeneous GPU/CPU
clusters by using some methods like decoupled
communication, gradient compression, pipelining, and
adaptive hyperparameter tuning to improve efficiency
and training performance. Future research could focus
on combining these techniques into hybrid approaches
to boost scalability and reduce Time-To-Accuracy in
large-scale, dynamic systems.

ACKNOWLEDGMENT

This work was partly supported by Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea
government (MSIT) (RS-2020-11200946, Development
of Fast and Automatic Service recovery and
Transition software in Hybrid Cloud Environment and
RS-2022-11221015, Development of Candidate
Element Technology for Intelligent 6G Mobile Core
Network)

REFERENCES

[1] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A Unified
Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In Proceedings of USENIX
Symposium on Operating Systems Design and Implementation 2020.

[2] BytePS. https://github.com/bytedance/byteps.

[3] Yuchen Zhong, Cong Xie, Shuai Zheng, and Haibin Lin. Compressed
communication for distributed training: Adaptive methods and system.
arXiv preprint arXiv:2105.07829 (2021)

[4] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-reduce
Algorithms for Clusters of Workstations. Journal of Parallel and

Distributed Computing, 2009.

[5] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-
Yiing Su. Scaling Distributed Machine Learning with the Parameter
Server. In OSDI 2014.

[6] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene Ng. Hi-Speed
DNN Training with Espresso: Unleashing the Full Potential of
Gradient Compression with Near-Optimal Usage Strategies. In
Proceedings of the Eighteenth European Conference on Computer
Systems 2023.

[7] H. Lim, J. Ye, S. Abdu Jyothi, and D. Han. Accelerating model
training in multi-cluster environments with consumer-grade gpus. In
ACM SIGCOMM 2024.



