
는 와 이미지로 구성된 우주 객체 인식용 데이터셋으로 약 만 장의 이미지가 개의 클래스로 분류되어 있고 모두 현실적인 시뮬레SPARK RGB Depth , 15 11 , 
이션 환경에서 생성되었다 해당 데이터셋을 공개한 연구에서는 무작위 초기화 특징 추출 미세 조정 방식 비교 센서 노이즈 영향 분석 그리고 다중 . , , , , 
모달 우주선 인식 등 다양한 실험을 수행하였다 그중 다중 모달 인식 실험은 이미지 크기를 줄인 예비 평가이며 만 학습했을 때와 이미지를 . , , RGB Depth 
함께 학습했을 때의 성능도 간단히 언급만 하고 넘어갔다 본 연구는 데이터셋을 기반으로 총 다섯 가지융합 전략을 적용하여 단독 학습과 . SPARK , RGB 
융합 구조 간의 성능 차이를 보다 정량적이고 체계적으로 비교한다 특히 파편과 위성 클래스의 분리 성능을 중심으로 융합 방식이 우주 객체 인식 성능에 . , , 
미치는 영향을 평가하였다 실험 결과 모든 융합 방식이 단독 입력보다 우수한 성능을 보였으며 과 은 파편 감지와 위성 . , RGB , Gated Fusion Late Fusion
분류 성능 모두에서 가장 우수한 결과를 기록하였다 본 연구는 융합 전략의 선택이 실질적인 성능에 영향을 미친다는 점을 정량적으로 보여주며 향후 . , 
우주 객체 인식 시스템에서의 기초적 기준을 제공할 수 있다.

우주 객체 인식 및분류는 중요한 기술로 부상하고 있다 이를 위한 데이터. 
셋인 는 약 만 장의 시뮬레이션 기반 및 깊이 이SPARK[1] 15 RGB Depth( ) 
미지를 포함하고 있으며 이를 활용한 다양한 분류 실험을 통해 우주 환경에, 
서의 객체 인식 성능을 측정할 수 있다.

그림 데이터셋의 예시 이미지 왼쪽은 이미지 오른쪽은 해1: SPARK . RGB , 
당 객체의 이미지Depth 

 
그러나 를 제안한 기존 연구에서는 단독 학습과 SPARK RGB RGB-Depth 
융합 학습 간 성능 차이를 단순 수치로만 제시하고 있으며 이미지 크기를 , 
제한한 예비 학습으로 진행되었다 또한 기존 연구들은 대부분 하나의 융합 . , 
구조에 집중하거나 융합 전략 간 비교 없이 성능 향상을 보고하는 데 그치, 
고 있다. 
본 연구는 이러한 문제를 바탕으로 다양한 수준의 융합 구조를 동일한 조건 , 
하에서 비교 분석함으로써 어떤 방식의 융합 방식이 데이터셋에서 SPARK 
더 효과적인지 정량적인 
결과로 나타낼 것이다 구체적으로는 다음과 같은 융합 방식을 사용한다. :

단독 학습- RGB 
입력 단계에서 와 를 채널 차원에서 융합- Early Fusion: RGB Depth

(concat)
와 이미지의 특징을 각각 추출한 후 융합- Late Fusion: RGB Depth 

(concat) 
방식의 하나로 를 쿼리- Cross Attention Fusion: Late Fusion , RGB , 

를 키 밸류로 사용하는 구조적 융합Depth /
와 의 특징 중요도를 동적으로 조절- Gated Fusion: RGB Depth

본 연구의 실험은 다음과 같은 측면에서 의의를 갖는다 기존 논문. SPARK 
에서는 와 융합의 효과를 간략한 수치로만 비교하였으나 본 연RGB Depth , 
구는 다양한 융합 전략의 성능을 정량적 지표로 분석하여 각 전략 간 차이가 
실제 성능에 어떤 영향을 미치는지를 객관적으로 평가한다 또한 단순히 이. , 
어붙이는 방식 외에도 같은 융합 concat Cross Attention, Gated Fusion 
기법을 비교하여 서로 다른 데이터 간 파편 검출이나 위성 분류에 어떤 성, 
능 향상을 가져오는지 실험적으로 검증한다.

최근 와 와 같은 다양한 환경의 데이터를 융합하여 객체 인식 RGB Depth
성능을 향상시키려는 연구가 활발히 진행되고 있다. 
이 중 과 은 널리 사용되는 방식들이다Early Fusion Late Fusion . Early 

은 입력 단계에서 두 데이터를 채널 기준으로 이어 붙이고Fusion , Late 
은 와 이미지의 특징을 각각 추출한 후 융합한다Fusion RGB Depth . [2], 

에서는 이러한 과 구조를 모두 구현하고 정[3] Early Fusion Late Fusion 
량적으로 비교하였다 본 연구에서는 의 융합 방식을 기반으로 . [3] Early 

과 구조를 사용한다Fusion Late Fusion .
또한 융합 과정에서 단순히 이어 붙이는 방식 외에도 , CrossAttention[4]
과 같은 융합 방식도 도입했다 은 Gated Fusion[5] . Cross Attention RGB 
특징을 로 이미지의 특징을 와 로 설정하여 서로 Query , Depth Key Value
다른 데이터 간의 상호작용을 학습한다 은 와 이. Gated Fusion RGB Depth 
미지의 특징 간 상대적 중요도를 동적으로 조절하여 융합하는 방식으로, 

연구에서도 사용되었다SPARK .
기존 연구들은 와 의 융합을 포함한 다양한 전략을 통해 객체 인RGB Depth
식 성능 향상을 시도해왔으며 각각의 논문은 융합 위치 구조 등에 따라 다, , 
양한 접근 방식을 보였다.
이처럼 기존 연구들을 보면 와 융합 구조에 따라 다양한 전략을 RGB Depth 
제안하고 있으며 융합 위치 방식 등에 따라 성능이 달라진다는 점을 알 수 , , 



있다 본 연구는 이러한 다양한 융합 전략을 동일한 조건에서 실험하여 각 . 
방식의 실질적인 성능 차이를 정량적으로 분석해 나타낸다

본 연구는 모델 정확도와기존 연구의 에서 정의된 지표를 SPARK Task1
사용해 각각의 융합 전략의 성능을 비교한다 사용한모델은 . 

이고 단독 모델은배치 크기 나머지는 배치 크기EfficientNet-B0 , RGB , 32 
로 에폭 반복 훈련을 진행했다 각 융합 전략의 지표는 개의 시드로 평20 . 3
균을 낸 결과이다. 

는 파편 클래스에 대해 정밀도 와 재F -score(debris) (debris) (precision)₂
현율 을 이용해 계산된다 이는 파편객체를 놓치지 않는 것이 중요하(recall) . 
다는 점을 반영한다 은 파편을 제외한 나머지클래스. Accuracy(Satellite)
에 대해 계산된 정확도이다 정상 위성 객체를 얼마나 정확하게 구분했는가. 
를 측정한다 는 두 값을 단순히 더한 것으로 파편과 위성 인. Performance , 
식 성능을 종합평가한다 이 가지 성능 지표는 에서 채택. 3 SPARK task1[1]
한 평가 방식이고 본 연구에서는 여기에 전체적인 정확도 수치(Accuracy) 
를 같이 비교할 것이다.

그림 융합 전략 별 성능 비교 그래프2: 

실험 결과 모든 융합 구조가 단독 모델보다 파편 감지 및 위성 분류 , RGB 
성능에서 우수한 결과를 보였다 특히 과 의 성. Late Fusion Gated Fusion
능이 돋보였는데 각각 및 의 를 기록하, 98.79% 98.98% F -score(debris)₂
며 파편 객체를 높은 확률로 놓치지 않는다는 것을 보였고 위성 정확도 역, 
시 및 로 가장 우수하였다 반면 방식은 90.1% 89.61% . , Cross Attention 
상대적으로 낮은 파편 감지 성능 을 보였으며 이는 이 세(86.05%) , attention
밀한 조정에따라 파편과 같은 클래스에 민감할 수 있음을 시사한다 전체적. 
인 구분 정확도 또한 과 에서의 값이 가장 높은 , Late Fusion Gated Fusion
값을 기록했다 만 단독으로 썼을 때는 가장 낮은 정확도인 를 . RGB 86.82%
기록하면서 정보 없이 학습된 모델의 한계를 보여준다Depth . Early 

은 전체적으로중간 정도의 성능을 보였는데 간단한 구조 및 개념을 Fusion , 
가졌지만 이정도면 효과적인 성능이라고 할 수 있다.
이와 같은 정량적 비교를 통해 다양한 융합 전략 간의 구조적 특성과 클래스
별 민감도를 평가할수 있었다.

본 연구는 데이터셋을 기반으로 다양한 데이터 융합 SPARK , RGB-Depth 
방식이 우주 객체 분류 성능에 어떤 영향을미치는지 정량적으로 분석하였
다 단독 학습. RGB , Early Fusion, Late Fusion, Cross Attention, 

의 총 가지 융합 전략을 비교하였다Gated Fusion 5 .
실험 결과 모든 융합 방식이 단독 학습보다 우수한 성능을 보였으며, RGB , 
특히 과 이 대부분의 지표에서 우수한 성능을 Late Fusion Gated Fusion
기록하였다 이러한 결과는 융합 방식에 따라 성능이 상당한 . RGB-Depth 
차이를 보일 수 있음을 정량적으로 보여주고 파편과 같은 위험 객체 분류의 , 
성능 향상을 위해 어떤 융합 전략을 고르는지가 중요하다고 할 수있다.
향후 연구에서는 다양한백본 및 학습 전략을 적용하여 본 연구의 결과가 일
반화 가능한지 검증하는 일이 중요할 것으로 보인다.
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