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요 약

본 논문에서는 기존 스마트폰 IMU 센서를 이용한 보행자 관성 항법(Pedestrian Dead Reckoning; PDR) 기법의 자세 고정
제약 한계를 극복하기 위해, 스마트폰에 내장된 지자기 센서를 활용한 자세별 자기장 맵 구축 및 딥러닝 기반 사용자 자세
분류 기법을 제안한다. 사용자의 보행 중 자세는 텍스트 타이핑, 통화, 주머니 휴대의 세 가지로 정의하였으며, 데이터 증강을
위해자기장시퀀스에회전변환및슬라이딩윈도우기법을적용하였다. 제안된기법의성능검증을위해딥러닝모델을통한
자세 분류 성능 평가를 수행한 결과, 다양한 피험자에 대해 높은 정확도를 나타내어 제안 기법의 효과적인 자세 분류 성능을
확인하였다.

Ⅰ. 서 론

최근 스마트폰을 이용한 실내 측위 (Indoor Localization) 연구에서는

외부 자원 없이 스마트폰 내부의 관성 측정 장치 (Inertial Measurement

Unit; IMU) 센서만으로 사용자의 이동 경로를 추정하는 보행자 관성 항

법 (Pedestrian Dead Reckoning; PDR) 기술이 활발히 연구되고 있다

[1,2]. PDR 기법은 Wi-Fi, Beacon 등 별도의 인프라 없이도 실내 환경에

서 위치 추정이가능하다는 장점이 있어인프라 제약이있는공간에서유

용하게 활용될 수 있다. 그러나, 기존 PDR 기법은 스마트폰이 일정한 자

세로고정되어있다는가정을전제로하며, 이는 실제 환경에서는쉽게성

립되지않는다. 사용자는실생활에서텍스트타이핑, 통화, 주머니휴대등

스마트폰을 다양한 방식으로 휴대하게 되며, 이로 인해 센서의 기준 축이

지속적으로 변화되어 측위 정확도에 부정적인 영향을 미친다. 따라서,

PDR 기법의 실생활 적용을 위해 스마트폰 휴대 자세 변화에 강건한 측위

기술이요구된다. 이에본논문에서는스마트폰에내장된 IMU 센서를활용

하여, 다양한사용자자세를인식할수있는딥러닝기반의사용자자세추

정기법을제안한다. 제안기법은사용자의스마트폰휴대자세를실시간으

로분류하고, 각 자세에따라적절한센서보정또는처리전략을적용함으

로써, 자세 변화로 인한 측위 정확도 저하를 효과적으로 완화할 수 있다.

Ⅱ. 자기장 데이터 수집 및 전처리

스마트폰의지자기센서는현재위치의지구자기장을   의 3축 벡
터 형태로 측정한다[3]. 그러나 사용자의 자세가 달라지면 스마트폰의 기

준축도함께변화하게되며, 이로 인해동일한위치에서도 사용자의 자세

에 따라 측정되는 자기장 값은 달라질 수 있다. 그림 1은 이러한 특성을

시각적으로 보여주는 예로, 텍스트 타이핑, 통화, 주머니 휴대의 세 가지

자세에 따라 측정된 동일한 경로의 자기장 시계열 값의 분포가 상이함을

보여준다. 본 연구에서는 이러한 지자기 센서의 특성을 이용하여 자세별

자기장맵을구축하고, 이를 전처리하여딥러닝기반분류모델의입력데

이터로 사용하였다. 자기장 맵은 전형적인 대형 사무형 건물인 숭실대학

교 형남공학관 3층에서 수집되었으며, 데이터 수집은 텍스트 타이핑, 통

화, 주머니 휴대의 세 가지 자세를 고려하여 수행되었다. 또한, 각 자세별

130 걸음에 해당하는 동일한 길이의 자기장 시퀀스를 1회씩 수집하였다.

그림 1. 스마트폰 휴대 자세에 따른 자기장 값 분포

학습 데이터가 부족할 경우 데이터 증강 (Data Augmentation) 기법은

모델의일반화성능을 향상시키고과적합을방지하는데 효과적으로사용

된다. 본 연구에서는 각 자세에 대해 130 걸음에 해당하는 자기장 시퀀스

만을 수집하였으며, 추가적인 데이터는 확보하지 않았다. 이로 인해 수집

된 데이터만을 그대로 입력 데이터로 사용할 경우, 데이터 부족으로 인한

딥러닝 모델의 과적합이발생할우려가있다. 따라서, 모델의 일반화 성능

을 향상시키고, 자세별 자기장 분포의 다양성을 반영하기 위해 각 자기장

시퀀스에 대해 ±10도 범위 내에서 임의의 각도를 적용한 축 기준 회전
변환을 적용하였다. 이러한 과정을 통해 각 자세별 100개의 자기장 시퀀



스를 생성하였으며, 총 300개의 자기장 시퀀스를 확보하였다. 위 회전 변

환과정을 통해자기장시퀀스에노이즈를 추가함으로써현실적인변동성

을 모사하고, 동시에 데이터 증강 효과도 달성하였다.

슬라이딩 윈도우 (Sliding Window) 기법은 시계열데이터를 학습 가능

한 형태로 구성하는 데 유용한 방법으로, 고정된 크기의 윈도우를 데이터

를 따라 일정 간격으로 이동시키며 각 구간을모델학습에 사용하는 방식

이다[4]. 본 연구에서는회전 변환을 통해 증강된 데이터에 슬라이딩윈도

우 기법을 적용하여 연속적인 시계열 데이터를 생성하고, 이를 통해 모델

이시간적패턴을효과적으로학습할수있도록하였다. 윈도우크기는사

용자의 자세가 실시간으로 바뀌는 상황에서 빠르게 변화를 감지할 수 있

도록 5로 설정하였으며, 1프레임 단위로 이동시켜 최대한 많은 시계열 샘

플을 생성하였다. 데이터 증강과 슬라이딩 윈도우 기법을 적용한 결과, 기

존 (390, 3) 크기의 학습데이터는총 37,800개의시퀀스로구성된 (37,800,

5, 3) 크기의시계열 데이터로변환되었으며, 각 시퀀스는 5프레임 길이의

3축 자기장 벡터로 구성된다. 최종적으로 생성된 전체 데이터는 학습, 검

증, 테스트 세트로 8:1:1의 비율로 분할하여 모델 학습에 활용하였다.

Ⅲ. 딥러닝 모델 학습 및 실험 결과

본연구에서는스마트폰의지자기센서를통해수집한데이터를기반으

로, 보행 중 사용자의 자세를 분류하기 위해 순환 신경망 구조인 LSTM

(Long Short-Term Memory) 모델을 사용하였다. LSTM 모델은 시계열

데이터의 시간적 흐름과 변화를 효과적으로 학습하며, 연속적인 자기장

벡터의 변화 양상을 통해 서로 다른 자세를 구분하는 데 적합하다[5]. 모

델 학습은한명의피험자데이터를활용하여수행되었으며, 분류 성능평

가는 학습에 포함된 피험자 (Seen)와 포함되지 않은 피험자 (Unseen)를

대상으로 각각 진행하였다. 특히, 제안한 모델이 특정 피험자에 특화되지

않고 다양한 피험자에게도 잘 동작하는지를 검증하기 위해, 학습에 포함

되지 않은 세 명의 피험자 데이터를 기반으로 일반화 성능을 평가하였다.

모델은 해당 피험자들에 대한 사전 정보 없이 자세 분류를 수행하였으며,

자세별 예측 정확도는 표 1에 제시하였다.

실험 결과, Seen 피험자에 대한 자세 분류 정확도는 97.7%였으며, 세

명의 Unseen 피험자에 대해서는 각각 94.6%, 96.2%, 80.0%의 정확도를

기록하였다. 전반적으로높은분류 성능을 확인할 수있었으나, 피험자간

정확도편차가 존재하였으며, 이는개인의보행 습관, 체형, 또는 스마트폰

휴대 방식의 차이에 기인한 것으로 보인다.

본 논문에서는스마트폰에내장된지자기센서를활용하여사용자의보

행중자세를효과적으로분류할수있는딥러닝기반의자세추정기법을

제안하였다. 제안한 기법은 특정 피험자에 국한되지않고, 다양한보행습

관 및 스마트폰 휴대 방식에 대해서도 안정적으로 동작함을 실험을 통해

확인하였다. 이를 통해 실내 위치 추정 시스템에서 발생할 수 있는 자세

변화로 인한 오차를 사전에 보정할 수 있다는 가능성을 제시하였으며, 향

후 PDR 기반의 실시간 실내 측위 시스템의 정확도 향상에 기여할 수 있

을 것으로 기대된다.

표 1. 다양한 사용자의 스마트폰 휴대 자세 추정 결과

Subject ID Subject Type Accuracy
Subject 1 Seen 97.7%
Subject 2 Unseen 94.6%
Subject 3 Unseen 96.2%
Subject 4 Unseen 80%
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