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요 약

5G NR V2X(New Radio Vehicle-to-Everything) 환경에서 사용되는 PSSCH(Physical Sidelink Shared Channel)의 채널 추정 성능은 고속 이동 및
복잡한 채널 환경에서 통신 신뢰성에 큰 영향을 미친다. 본 연구에서는 이러한 환경에서 채널 추정 정확도를 향상시키기 위해 CNN(Convolutional
Neural Network), LSTM(Long Short-Term Memory, ResNet(Residual Network) 기반의 딥러닝 채널 추정 기법을 적용하고, DMRS(Demodulation
Reference Signal) 심볼 수에 따른 성능 차이를 분석하였다. 실험 결과, DMRS가 2심볼 또는 4심볼일 경우 LSTM이 가장 우수한 성능을 보였으며,
3심볼일 경우에는 CNN이 상대적으로 높은 정확도를 나타냈다. 이를 통해 채널 환경과 DMRS 구성에 따라 딥러닝 모델의 성능이 달라질 수 있음을
확인하였으며, 이는 향후 채널 환경에 따라 적절한 딥러닝 모델을 적용할 수 있는 가능성을 보여준다.

Ⅰ. 서 론

딥러닝 기반채널 추정 기법은 최근 무선 통신 시스템의 성능 향상을 위

한 중요한 기술로 주목받고 있다. 특히 5G NR V2X(New Radio

Vehicle-to-Everything) 환경에서는 고속 이동 중에도 안정적인 통신 품

질을 유지해야 하므로, 채널 추정의 정확도가 전체 시스템의 전송 효율과

신뢰성에 직접적인영향을 미친다. 기존의 LS(Least Square) 기법은 계산

이 간단하나 잡음에 민감하고, MMSE(minimum mean square error) 기

법은 정확도가 높지만 계산 복잡도가 크다는 단점이 있다. 이러한 한계를

극복하기 위해 CNN(Convolutional Neural Network), LSTM(Long

Short-Term Memory), ResNet(Residual Network), transformer 등 다

양한 딥러닝모델이채널추정에 적용되고있다[1]. 그러나 NR V2X 환경

에 최적화된 채널 추정 기법에 대한 연구는 상대적으로 부족하며, 특히

NR V2X의 물리 채널인 PSSCH(Physical Sidelink Shared Channel)에

대한 딥러닝 기반 채널 추정 연구는 매우 제한적이다. 이에 본 논문은

PSSCH 환경에서 다양한 딥러닝 채널 추정 모델을 적용하고,

DMRS(Demodulation Reference Signal) 심볼 수 변화에 따른 성능을 분

석한다.

Ⅱ. 시스템 모델

PSSCH는 NR V2X 통신에서실제 데이터 전송에사용되는물리 채널이

다. Numerology 1에서는한 슬롯이 0.5ms로 구성되며, 14개의 OFDM 심

볼을 포함한다. 이때 PSSCH는 슬롯 내 두 번째 OFDM 심볼부터 마지막

두 번째 심볼까지의 구간에서 전송될 수 있으며, 해당 구간 내에 배치된

DMRS를 통해 채널을 추정한다. 본 연구에서는 [2]에서 정의된 세 가지

DMRS 전송패턴을사용한다. 각 패턴은슬롯내 PSSCH 전송구간에삽

입되는 DMRS 심볼의 위치를 정의하며, DMRS가 2심볼인 경우는 {4,

10}, 3심볼인 경우는 {1, 6, 11}, 4심볼인 경우는 {1, 4, 7, 10}의 위치에 배

치되어 채널 추정에 활용된다.

표 1. 시뮬레이션 파라미터

Parameter Value
Channel model Tapped-Delay Line-A
Bandwidth 20 [MHz]

Subcarrier spacing 30 [kHz]
Number of RBs 2
Number of PSSCH
OFDM symbols 12

Modulation QPSK
Noise AWGN

Delay Spread training: 50~300 [ns]
test: 50, 200 [ns]

Velocity training: 30~150 [km/h]
test: 60, 100 [km/h]

SNR training: 0~20 [dB]
test: 0:2:20 [dB]

Number of training
data 10,000

Optimizer Adam

본 논문에서는 표 1에 제시된 파라미터를 기반으로, 단일 안테나 기반의

OFDM 시스템을 가정한다. 이때, 개의 서브 캐리어와 개의 OFDM 심
볼로 수신된 신호는 다음 수식과 같다.

  (1)

여기서 ∈ℂ×는 수신 신호, ∈ℂ×는 채널 응답, ∈ℂ×는 송신
신호, ∈ℂ×은잡음이다. PSSCH에 대한 LS 채널추정은 다음과 같이
수행된다.      (2)

위 수식을 통해 얻은 채널 는 DMRS 심볼이 위치한 리소스 그리드
상의채널응답을의미하며, 나머지영역의채널값은선형보간법을통해

추정한다.



Ⅲ. 딥러닝 기반 채널 추정

본 논문에서는 LS 채널 추정 결과를 바탕으로 딥러닝 모델의 학습 데이

터를 구성한다. 추정된 채널의 복소수 값을 실수부와 허수부로 분리하여

입력으로 사용하며, 입력 데이터는 SNR(signal-to-noise ratio), delay

spread, velocity를 사전에 정의한범위내에서 무작위로 선택하여 다양한

채널 조건을 반영한다. CNN, LSTM, ResNet 세 가지 딥러닝 모델은 이

러한 데이터를 기반으로 정답 채널 응답을 참조하여 학습을 수행한다.

CNN 모델은 2차원리소스 그리드의 공간적 패턴학습에 적합한 모델이

다. 입력데이터는주파수및시간축의리소스블록에실수부와허수부가

분리된 240×12×2 크기의 3차원형태로구성된다. 3×3 커널을사용하는세

개의 컨볼루션 계층으로 구성되며, 각 계층에는 16개, 32개, 2개의 필터와

함께 배치 정규화 및 ReLU(Rectified Linear Unit) 함수가 적용된다.

LSTM 모델은 시계열 데이터의 시간적 의존성을 효과적으로 학습한다.

이에 입력은 실수부와 허수부 각각 240개로 구성된 480차원의 피처 벡터

이며, 256개의 LSTM 은닉 유닛을 통해 순차적인 시간 패턴을 학습한다.

ResNet 모델은 두 개의 residual block으로 구성되어, 깊은 신경망 학습

시 기울기 소실 문제를 완화하며, 각 블록은 3×3 컨볼루션 계층과 배치

정규화, ReLU 활성화함수로구성된다. 스킵 연결을통해정보 손실을줄

이고, 최종 출력층은 1×1 컨볼루션 계층을 사용해 실수부와 허수부를 예

측한다. 각 모델은구조적특성에따라채널정보를학습하는방식에차이

가 있으며, 이에 따른 성능 차이를 실험을 통해 비교한다.

Ⅳ. 실험 결과

본 실험에서는 PSSCH DMRS가 2심볼, 3심볼, 4심볼로 구성된 조건에서

CNN, LSTM, ResNet 세 가지 딥러닝 기반 채널 추정 모델의

MSE(Mean Squared Error) 성능을 고속 이동 환경과 저속 이동 환경에

서 평가하였다. 그림 1과 그림 3의 DMRS가 2심볼 및 4심볼일 때는 전

SNR 구간에서 LSTM이 가장 우수한 성능을 나타냈다. 반면, 그림 2의

DMRS가 3심볼일 때는 SNR이 높은 구간에서 CNN이 가장 뛰어난 성능

을 보였으며, ResNet의 성능 저하가명확히 드러났다. 전반적으로 딥러닝

기반 채널 추정 모델은 고속 이동 환경과 SNR이 낮은 조건에서는 LS 기

법대비우수한 성능을 보였고, SNR이 높고저속 이동환경에서는 LS 기

법과유사한성능으로 수렴하는 경향을 나타냈다. 이를 통해 LSTM은 시

계열 정보를 효과적으로 학습하여 고속 이동 환경에서의 채널 시간 변화

를 잘 반영함을 확인하였다. CNN의 경우 DMRS가 고르게 분산된 3심볼

구성에서 공간 패턴 인식에서 강점을 보였으며, ResNet은 구조적 복잡성

으로 인해 단순한 입력 구조에서 학습 효율이 낮아진 것으로 판단된다.

그림 1 DMRS가 2심볼일 때 SNR에 따른 MSE 성능

그림 2 DMRS가 3심볼일 때 SNR에 따른 MSE 성능

그림 3 DMRS가 4심볼일 때 SNR에 따른 MSE 성능

Ⅴ. 결론

본논문에서는 NR V2X 환경에서 사용되는 PSSCH에 대해다양한 채널

환경에서 딥러닝 모델을 적용하고 그 성능을 비교하였다. 실험 결과,

DMRS 심볼수가 2개와 4개일 때는 LSTM의성능향상이 가장뚜렷하게

나타났으며, 3개인 경우는 CNN이 상대적으로 더 우수한 성능을 보였다.

ResNet은 전체적으로 다른모델에 비해낮은성능을보였다. 이러한결과

는 채널 조건과 DMRS 구성 방식에 따라 딥러닝 모델 간성능 차이가 발

생할 수 있음을 보여주며, 향후 각 환경에 적합한 딥러닝 모델 선택과 구

조 최적화를 위한 추가 연구가 필요함 확인하였다.
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