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요 약

본논문에서는기압계센서데이터기반층탐지의한계를극복하기위해, 스마트폰의지자기센서를활용한자기장맵과 딥러
닝을 사용한 초기 층 탐지 기법을 제안한다. 슬라이딩 윈도우 기법과 데이터 증강 기법을 통해 방향 변화에 강건한 자기장
시퀀스를 구성하였으며, 이러한 시계열 시퀀스를 딥러닝 모델을 통해 학습 후 실험 및 검증함으로써 실내 환경에서의 초기
층을 정확히 구분 가능함을 확인하였다.

Ⅰ. 서 론

최근 스마트폰을 이용한 실내 측위 (Indoor Localization) 연구에서는

외부 인프라 없이, 스마트폰에 내장된 관성 측정 장치 (Inertial

Measurement Unit; IMU) 센서만을이용하여위치를측위하는보행자 관

성 항법(Pedestrian Dead Reckoning; PDR) 기술이 활발히 연구되고 있

다 [1]. 이러한 실내측위 환경에서 다층 구조의 건물에서는 사용자의 2차

원 위치뿐만 아니라 정확한 층수까지 동시에 탐지할 수있는기술이 요구

된다.

일반적으로 실내에서의 층 탐지는 스마트폰의 기압계 (Barometer)를

이용하여 사용자의 고도 변화를 감지하는 방식으로 이루어진다[2]. 하지

만 기압계 센서는 대기압의 변화에 민감하게 반응하기 때문에, 동일한 층

에서 데이터를 수집하더라도 날씨, 온도, 시간 등의 외부 환경 요인에 따

라측정값이달라질수있다. 이러한특징으로인해기압계센서를활용한

층탐지방식은층간이동을감지하는데는유용하지만, 사용자의초기층

위치를정확히파악하는데 한계가 존재한다. 따라서, 기압계 센서 기반의

층수탐지기술은초기층정보를정밀하게추정할수있는기술과의결합

이 필수적이다.

본 논문에서는 이러한 한계를 극복하기 위해, 각 층에서 수집한 자기장

센서 데이터를 기반으로 자기장 맵을 구축하고, 이를 딥러닝 모델에 학습

시켜 사용자의 현재 층을 정확하게 탐지하는 딥러닝 기반 초기 층 탐지

기법을 제안한다.

Ⅱ. 데이터 수집 및 전처리

본 연구에서는 숭실대학교 조만식기념관의 3층부터 7층까지를 대상으

로, 삼성 갤럭시 노트 10에 내장된 지자기 센서를 활용하여 실내 자기
장 데이터를 수집하였다. 그림 1에 제시된 경로를 따라, 스마트폰 화면이

하늘을 향하도록 들고 보행하며 데이터를 수집하였으며, 각 층의 건물 구

조는 동일하다. 자기장 데이터는 보행 중 걸음이 발생할 때마다 수집되었

으며, 모든 층에서 동일하게 130걸음의 데이터를 확보하였다.

그림 1. 자기장 데이터 수집 경로

지자기 센서는지구 자기장의 방향과 크기를 3차원벡터형태로 측정한

다. 그러나 스마트폰의방향이변할 경우, 동일한위치에서도 지자기 벡터

의 구성 요소가 달라지므로, 방향에 따라 측정값이 달라질 수 있다[3]. 이

로 인해, 자기장 맵수집 경로의 반대 방향에서 데이터를 수집할 경우, 모

델이해당층의특성을제대로인식하지못할가능성이있다. 이를 보완하

기위해, 본 연구에서는기존자기장시퀀스를역순으로구성한반대방향

시퀀스를추가생성하여, 모델이양방향경로에모두대응할수있도록데

이터를 증강하였다. 또한, 각 시퀀스에 대해 ±10도 범위 내에서 무작위
회전 변환을 적용하여, 방향 변화에대한 모델의 강건성을향상시켰다. 이

러한데이터증강과정을통해각층마다총 60개의자기장시퀀스를생성

하였으며, 이 중 30개는 반대 방향 시퀀스로 구성하였다.

슬라이딩윈도우 (Sliding Window) 기법은 시계열 데이터를 일정한 길

이의 구간으로 분할하며, 딥러닝 모델이 시간적 패턴을 효과적으로 학습

할 수 있도록 돕는 기법이다[4]. 본 연구에서는 증강된 자기장 시퀀스에



대해 윈도우 크기 10, 이동 간격 1프레임을 적용하여 시계열 데이터를 생

성하였다. 이때 생성된 각 시퀀스는 길이 10의 연속된 3차원 자기장 벡터

로 구성된다. 슬라이딩 윈도우를 적용한 결과, 층당 7,260개의 자기장 시

퀀스가 생성되었으며, 3층부터 7층까지총 5개층에대해 36,300개의학습

시퀀스를 확보하였다. 모든 시퀀스는 (10, 3) 형태의 입력 데이터로 구성

되며, 각 층의 자기장 시퀀스에는해당 층을 나타내는 고유 클래스 라벨을

부여하였다. 생성된 전체 데이터는 학습, 검증, 테스트 세트로 8:1:1의 비

율로 분할하여 모델 학습 및 검증에 활용하였다.

Ⅲ. 딥러닝 모델 학습 및 실험 결과

본 연구에서는 LSTM (Long Short-Term Memory) 기반의 딥러닝 모

델을활용하여 층별자기장시퀀스를 학습및 검증하였다. LSTM은 시계

열 데이터를 효과적으로 처리할 수 있는 구조로, 실내 위치 측위과 같이

시간에따른 데이터 패턴을 학습하는데 적합한 모델이다[5]. 모델은 10프

레임 길이의자기장 3축 시퀀스를입력으로 하여사용자가위치한층수를

분류하도록 설계하였다. 모델 학습에는 Adam 최적화 알고리즘과

Categorical Cross Entropy 손실 함수를 사용하여 모델의 성능을 최적화

하였다.

실험은 숭실대학교 조만식 기념관의 3층부터 7층까지를 대상으로 수행

되었다. 본 실험에서는 제안한 방법이 적절성을 판단하기 위해 자기장 맵

을 수집한경로와 반대 방향의경로를 걸으면서 실제 실험 데이터를 수집

하였다. 실험 자기장데이터또한학습데이터와같이윈도우크기를 10으

로설정한후, 슬라이딩 윈도우 기법을 사용하여모델 입력 데이터로 사용

하였다. 각 층별분류정확도는표 1에 정리되어있으며, 3층과 5층은각각

98.3%, 95.8%로 가장높은 정확도를 보였다. 반면, 6층과 7층은 건물구조

의유사성과자기장패턴중첩으로인해상대적으로낮은 88.4%의정확도

를 기록하였다. 그러나 모든 층에서 88% 이상의 분류 성능을 확보하여,

제안한 기법이 초기 층 탐지에 있어 실효성 있는 대안이 될 수 있음을 실

험적으로 입증하였다.

본 논문에서는 스마트폰의 지자기 센서를 활용하여 초기 층을 정확히

탐지할 수 있는 딥러닝 기반의 기법을 제안하였다. 제안 모델은 슬라이딩

윈도우와 데이터 증강 기법을 통해 생성된 자기장 시퀀스를 LSTM으로

학습하여, 사용자의 층을 효과적으로 분류하였다. 실험 결과, 전체 평균

92.7%의 높은정확도를기록하였으며, 모든 층에서안정적인성능을 확인

하였다. 이를 통해 본 기법이 실내 환경에서 초기 층 탐지에 효과적인 대

안이 될 수 있음을 검증하였다.

표 1. 모델의 초기 층 탐지 정확도

Floor Number Accuracy

 Floor 98.3%

 Floor 92.5%

 Floor 95.8%

 Floor 88.4%

 Floor 88.4%

ACKNOWLEDGMENT

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학

사업의 지원을 받아 수행되었음

참 고 문 헌

[1] K.-S. Kim and Y. Shin, “Deep learning-based PDR scheme that
fuses smartphone sensors and GPS location changes,” IEEE
Access, vol. 9, no. 1, pp. 158616-158631, Dec. 2021.

[2] C. Lin and Y. Shin, “Multi-floor indoor localization scheme using
a Seq2Seq-based floor detection and particle filter with clustering,”
IEEE Access, vol. 11, pp. 66094-66112, July 2023.

[3] J. W. Lee, Android Sensor Story, Chs. 4-6, Freelec, 2014.

[4] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM J. Comput., vol.31,
no. 6, pp. 1794-1813, Jan. 2002.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.


