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요 약  

 
본 논문에서는 1 비트 관측치를 활용한 새로운 상태 추정 프레임워크를 제안한다. 먼저 시스템 모델을 완전히 알고 있다는 

가정 하에, Bussgang 정리와 dithering 을 응용하여 순차적으로 선형 상태 추정 기법 Bussgang-Kalman 필터를 

개발하고, 이어서 시스템 모델을 부분적으로만 안다는 현실적 상황을 반영하여, 딥신경망(DNN)을 결합한 상태 추정 

기법인 Bussgang-KalmanNet 을 제안한다. 성능 검증을 위해 NCLT 데이터셋을 이용한 수치 시뮬레이션을 수행한 결과, 

관측 값이 극도로 양자화(1 비트)되어 있어도 제안한 프레임워크가 높은 정확도의 상태 추정을 달성함을 확인하였다. 

 

 

Ⅰ. 서 론  

상태 추정 문제는 공학적 응용 분야가 확대됨에 따라 

그 필요성이 더욱 부각되고 있다. 상태추정을 위한 

대표적 방법으로 Kalman filter [1]가 있으며, 이후 이를 
기반으로 한 EKF (Extended Kalman Filter, [2])와 UKF 

(Unscented Kalman Filter, [3]) 등이 연구되어 왔다. 

최근에는 모델 불확실성을 다루기 위한 딥신경망(DNN) 

기반 접근법인 KalmanNet [4]도 제안되었다. 

기존 상태 추정 기법들은 대체로 이상적인 관측인 
고해상도 아날로그-디지털 변환기(ADC)를 가정한다. 

그러나 고해상도 ADC 는 비트 깊이 𝑁 이 커질수록 

시스템의 에너지 소비가 지수적으로 증가한다는 문제가 

있다. 이 때문에 저해상도 양자화기에 대한 연구가 
MIMO 시스템 등 다양한 분야에서 활발히 이루어져 

왔지만 [5]-[7], 심하게 양자화된 관측을 이용한 상태 

추정 문제는 아직 다루어진 바가 없다. 

본 논문에서는 관측에 1 비트 ADC 만 사용하는 새로운 

상태 추정 문제를 새로 정의한다. 1 비트 ADC 는 심각한 
비선형성으로 인해 기존 필터링 알고리즘으로는 정확한 

상태 추정이 불가능하다. 이를 해결하기 위해 시스템 

모델을 완전히 알고 있다는 가정 아래, Bussgang 정리 

[8]와 dithering 을 활용한 새로운 선형 필터링 기법인 

Bussgang-Kalman 필터(BKF)를 제안한다. 또한 시스템 
모델을 부분적으로만 아는 환경으로 확장하기 위해, DNN 

기반 상태 추정 기법인 Bussgang-KalmanNet (BKN)을 

개발한다. 이후 NCLT 데이터셋 [9]에 대한 종합적인 

시뮬레이션을 통해 제안 방법들의 성능을 검증하였다. 본 
논문은 심하게 양자화된 관측에서도 정확한 상태 추정이 

가능함을 입증하고, 완전 모델, 부분 모델 환경 모두에 

대한 효율적 해법을 제시한다는 데 그 의의가 있다. 

Ⅱ. 본론  

일반적으로, 이산 시간 비선형-공간(State-Space, SS) 

및 측정 모델은 
𝑥! = f(𝑥!"#) + 𝑤! 
𝑦! = ℎ(𝑥!) + 𝑣! 

와 같이 표현된다. 여기서 𝑓(⋅)는 시스템 동역학, ℎ(⋅)는 
관측 모델, 𝑤! 와 𝑣! 는 각각 상태 잡음과 측정 잡음 

벡터를 나타낸다. 상태 추정의 목표는 

𝔼/0𝑥! − x3!|!4
%|𝑦#, 𝑦%, … , 𝑦!8 

을 최소화하는 것이며, 여기서 𝑥3!|!는 시점 𝑡에서의 상태 

추정치이다. 관례적으로는 고해상도 ADC 를 가정해 𝑦! 
가 왜곡되지 않는다고 본다. 

본 연구에서는 1 비트 ADC 를 사용한다. 1 비트 ADC 

출력은 𝒓𝒕 = 𝑸(𝒚𝒕) = 𝒔𝒈𝒏(𝒚𝒕)이며, threshold 을 기준으로 

+1  또는 −1 만을 내보낸다. 이로 인해 심각한 

비선형성과 정보 손실이 발생하여 기존 필터링 
기법으로는 정확한 상태 추정이 어렵다. 따라서 1 비트 

양자화 신호를 다루기 위해 Bussgang 정리 [8]를 

적용한다. 먼저, 한단계 앞서 예측한 값 𝑦3!|!"# 을 빼서 

입력 신호의 평균을 0으로 만드는 dithering 을 수행하고, 

𝑟! = 𝑄(𝑦! − 𝒚D!|!"#) 를 얻은 후, 이를 바탕으로 다음 두 

단계의 필터링 알고리즘을 수행한다. 

1) 예측 단계: 이 단계에서는 프로세스 잡음 공분산 

행렬 𝑄!  및 측정 잡음 공분산 행렬 𝑅! 를 활용해 
상태 추정 오차 공분산을 예측한다. 

𝑥3!|!"# = 𝐹! ⋅ 𝑥3!"#|!"# 
𝚺!|!"# = 𝐹! ⋅ 𝚺!"#|!"# ⋅ 𝐹!' +𝑄! 
𝐏!|!"# = 𝐇! ⋅ 𝚺!|!"# ⋅ 𝐇!' +𝐑! 

여기서 𝚺!|!"# 와 𝑃!|!"# 는 각각 SS 모델과 측정 

모델의 오차 공분산 행렬이다. 계산의 편의를 위해 



 

𝐷! = 𝑑𝑖𝑎𝑔0𝑷!|!"#4
"#/%

로 정의하면 1 비트 관측 𝑟!의 

오차 공분산 행렬과 Bussgang 계수 𝐵!는 다음과 

같이 계산할 수 있다. 

𝑆!|!"# =
2
𝜋 sin

"#Y𝐷!|!"# ⋅ 𝑃!|!"# ⋅ 𝐷!|!"#Z 

𝐵! = [2
𝜋𝐷!|!"# 

2) 갱신 단계: 이 단계에서는 1 비트 관측 𝑟! 를 

이용해 상태 추정치를 보정한다. 
𝑥3!|! = 𝑥3!|!"# +𝐵𝐺! ⋅ 𝑟! 
𝚺!|! = 𝚺!|!"# −𝐵𝐺! ⋅ 𝑆!|!"# ⋅ 𝐵𝐺!' 

𝐵𝐺! = 𝚺!|!"# ∙ (𝐵! ⋅ 𝐻!)' ⋅ 𝑆!|!"#"#  

여기서 𝐵𝐺!는 Bussgang 이득이다. 

위 필터링 방법은 잡음 공분산 행렬 𝑄!와 𝑅!를 정확히 
알고 있을 때에만 적용 가능하다. 부분적으로만 모델 

정보를 아는 경우를 다루기 위해, 본 논문은 Bussgang-

KalmanNet (BKN)을 제안한다. BKN 은 Bussgang 이득 

𝐵𝐺! 를 직접 계산하지 않고, 오차 공분산 행렬을 

입력으로 받아 게이트 순환 유닛(GRU)을 통해 𝐵𝐺! 을 
학습하도록 설계되어 있다. 

논문의 분량 제약으로 인해, 제안한 BKN 의 입력 

변수만 아래와 같이 간략히 기술한다. 

l Δ𝑥_! = 𝑥3!|! − 𝑥3!"#|!"# : 프로세스 잡음 공분산을 

모델링한다. 

l Δ𝑥3! = 𝑥3!|! − 𝑥3!|!"# : 상태 예측 오차 공분산 

𝚺!|!"#을 모델링한다. 

l Δ𝑟! = Δ𝒓3! = 𝑟! : 𝑟! 에 의존하는 Bussgang 이득의 

잔여 항, 즉 `%
)
𝐷!|!"#𝑆!|!"#"# 을 모델링한다. 

이를 바탕으로 BKN 은 다음과 같이 표현된다. 
𝑥3!|! = 𝑥3!|!"# +𝐵𝐺!(θ) ⋅ 𝑟! 
ℒ = c𝑥! − 𝑥3!|!c

%
 

여기서 𝜃 는 가중치 파라미터이며, 손실함수 ℒ 에 대해 

역전파(back-propagation)로 최적화된다. 

 

Ⅲ. 결론 

본 논문에서는 제안한 방법을 NCLT 데이터셋 
[9]에서 검증하였다. 완전 모델 가정하에서 EKF 와 

BKF 의 MSE 는 각각 33.406 dB 와 32.577 dB 로 거의 

동일하였다. 부분 모델 가정하에서는 KalmanNet 과 

BKN이 각각 20.136 dB와 23.183 dB의 MSE를 보였다. 
따라서 제안한 프레임워크를 통해 1 비트 양자화로 

인한 신호 왜곡을 효과적으로 극복하여 정확한 상태 

추정을 달성함을 확인할 수 있었다. 

 

 
그림 1: NCLT 데이터셋에 대한 시뮬레이션 결과 
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