
1. Introduction

The existing Raspberry Pi 5-based real-time portable
license plate recognition system demonstrated the
feasibility of real-time inference using a low-power,
lightweight platform. Prior studies achieved an average
processing speed of 18.53 FPS using the YOLOv8n
model with a USB Coral Edge TPU, but faced
limitations in recognizing plates of high-speed vehicles
[1]. In this study, we replaced the YOLOv8n detection
model with EfficientDet_Lite0 and upgraded the AI
accelerator from a USB Coral Edge TPU to a
PCIe-based Dual Edge TPU, thereby enhancing real-time
performance in terms of speed, efficiency, and model size.
2. LPRNet (License Plate Recognition Network) model

LPRNet is an end-to-end and lightweight deep learning

model that significantly improves inference speed by

removing complex preprocessing and post-processing steps,

compared to traditional OCR methods [2]. Its compact

architecture makes it well-suited for on-device AI applications.

3. EfficientDet_Lite0 model
EfficientDet_Lite0 is a lightweight detection model optimized

for mobile environments and based on Google's EfficientDet
series. It achieves competitive detection performance while

maintaining a compact model size of approximately 5.6 MB

by utilizing BiFPN-based feature fusion and a compound
scaling strategy [3]. In this study, EfficientDet_Lite0 was

employed for the license plate detection stage. Figure 1

illustrates the overall architecture of the EfficientDet_Lite0 model.

Figure 1. EfficientDet_Lite0 model architecture

4. Model Development

In this study, we utilized the “Vehicle Type/Model Ye
ar/License Plate Recognition Video Data” provided by
the Ministry of Science and ICT and the National
Information Society Agency (NIA). For the detection
stage, the EfficientDet_Lite0 model was transfer-learned
on Korean license plate data, quantized to 8-bit integers,
and converted to the TensorFlow Lite (TFLite) format,
resulting in improved computational efficiency over the
YOLOv8n model. For character recognition, the LPRNet
model pre-trained in previous work was converted from
TensorFlow (.pb) to TensorFlow Lite (.tflite) format.

5. Experimental Setup and Results
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Abstract
This study proposes an enhanced real-time portable license plate recognition system by
replacing the YOLOv8n detection model with EfficientDet_Lite0 and upgrading the AI
accelerator from a USB Coral Edge TPU to a PCIe-based Dual Edge TPU. The proposed
pipeline detects license plates using a custom-trained EfficientDet_Lite0 and recognizes
characters using LPRNet. Experimental results show that recognition accuracy is comparable to
the previous approach, while average processing speed increases from 18.53 FPS to 45.60 FPS.
Additionally, the total model size is reduced from 13.6 MB to 6.6 MB, achieving approximately
a 2.5-fold improvement in both speed and model size.



Table 1 summarizes the experimental setup used in this study.

Table 1. Experimental Environment Configuration

Category Item Description

Raspberry Pi 5

H/W
CPU Broadcom BCM2712
RAM 8GB LPDDR4X-4267

S/W
OS==Debian12(BookWorm)
Python == 3.9.12, 3.11.2
opencv-python == 4.10.0.84

torch==2.0.1, torchvision==0.15.2

Dual Edge
TPU

Performance 8TOPS
S/W edge-tpu-silva == 1.0.4
power

consumption 4W

Camera Module 3 S/W libcamera == 0.4.0
rpicam-apps == 1.6.0

Touch Display Size 7 inch

Power Supply
Battery USB PD (5V/2.4A)

PD Trigger 5V 5A mode

Table 2 summarizes the performance evaluation metrics
used in the experiment.

Table 2. Performance Evaluation Metrics

Metric Description
mAP

(Mean Average Precision)
Performance of the object detection model was eva
luated using 100 test images.

CER
(Character Error Rate)

Character Error Rate (CER) of LPRNet was
measured using 5,667 test images as a metric
for inference performance.

EMA
(Exact Match Accuracy)

Exact Match Accuracy of LPRNet was
measured using 5,667 test images as a metric
for inference performance.

FPS
(Frame Per Second)

Average FPS was measured as a metric for
processing speed by running the entire
pipeline 10 times for 90 seconds.

Table 3 summarizes the performance and model size of
the detection and recognition networks.

Table 3. Comparison of Performance and
Model Size for Detection and Recognition Models

Module Method Model size
Metric

mAP@50-95⤒
Detection

Baseline 3.4 Mbyte 0.715

Proposed 5.6 Mbyte 0.876

Recognition
Baseline 10.2 Mbyte

CER⤓ EMA⤒
0.0024 0.9834

Proposed 1 Mbyte 0.0029 0.9811

The detection module achieved a performance improvement of
0.16, while the recognition module showed comparable

performance to the existing method. The total model size was

reduced from 13.6 MB to 6.6 MB in the proposed method.
Figure 2 compares throughput: the proposed pipeline

sustained 42.75–48.79 FPS, averaging 45.60 FPS, while the

baseline sustained 14.10–21.57 FPS, averaging 18.53 FPS.

(a) FPS of the baseline Method

(b) FPS of the Proposed Method

Figure 2. Comparison of FPS Between the Baseline and
Proposed Methods

Figure 3 illustrates the overall system architecture of t

he proposed method. In a Python 3.11 environment, ima
ges captured by Camera Module 3 are stored frame-by

-frame using a multi-buffering technique. The frames a

re then merged in a Python 3.9 environment to reconstr
uct the video; afterwards, the detection module locates l

icense plates and the recognition module reads the dete

cted plates, displaying the results on the touch display.

Figure 3. Overall System Architecture of the Proposed Method

Figure 4 displays the real-time operation screen
of the proposed portable license plate recognition
system.

Figure 4. Operation Screen of the Proposed Real-Time Portable

License Plate Recognition System

6. Conclusion

This study improved the average processing speed of

the existing USB Coral Edge TPU-based system from

18.53 FPS to 45.60 FPS—approximately 2.5 times faster
—by using the Dual Edge TPU and EfficientDet_Lite0

model. The total model size was also reduced from

13.6 MB to 6.6 MB, achieving lightweight optimization.
These results demonstrate the system’s potential for

high-speed object detection and recognition in edge

computing environments.
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