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Model backbone Image size mAP mioU macro F1-score
FCN8s - 256 62.00% 50.64% 59.20%
FCN16s - 256 57.67% 47.56% 58.36%
FCN32s - 256 51.19% 39.76% 57.12%
RepBlockFCN8s - 256 63.81% 48.59% 63.72%
Re::’i:’:;:::“ 256 61.49% | 48.07% 64.38%
ResNet50 256 62.23% 53.34% 60.76%
DeeplabV3+
ResNet101 256 62.34% 53.41% 61.82%
1ol ResNet50 256 62.54% 53.41% 58.69%
DeeplabV3+ ResNet101 256 62.51% | 53.85% 61.25%
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Model backbone Image size P o
FCN8s - 256 8 12
FCN16s - 256 8 12
FCN32s - 256 5 12
RepBlockFCN8s - 256 8 10
Re?;::l::zrdms ° 256 8 10
ResNet50 256 19 21
Deeplabyar ResNet101 256 14 14
RepBlock ResNet50 256 19 22
DeeplabV3+ | pesnet101 256 14 15
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