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Abstract

A curriculum learning framework for Matrix Product State (MPS) models that accelerates training on high-dimensional data
is proposed. Starting from low-dimensional inputs, we train a shorter MPS of length  by replacing consecutive site-wise
contraction with matrix power operations. A Z-order curve preserves spatial locality when linearizing images into the tensor
chain. As the curriculum advances, we gradually reduce the pooling window (or exponent) until the full-resolution MPS is
recovered. Experiments on MNIST show faster convergence and comparable final accuracy.

Ⅰ. Introduction

In modern machine learning, high-dimensional data such as images or

time series often exhibit strong local correlations that can be exploited

to reduce model complexity [1]. One promising approach is to

represent such data sequentially and process it with tensor network

models originally developed in quantum many-body physics. In

particular, the Matrix Product State (MPS) architecture [2, 3] provides

a highly parameter-efficient ansatz by decomposing a full tensor of

order  into a chain of low-order tensors interconnected by

moderate-size “bond” dimensions [4].

Despite their representational power, training an MPS on

full-resolution inputs can be expensive: the number of tensor

contractions grows linearly in , and the optimization landscape

becomes more complex as the chain length increases. To mitigate

these issues, we introduce a curriculum learning strategy that

progressively increases input resolution during training, allowing the

model to first capture coarse-grained structure before refining fine

details.

A tensor of order  is a multidimensional array

∈
 ××⋯× ,

whose entries we denote by  ⋯
, where each index  runs from

 to . A contraction of two tensors

∈⋯××⋯ and ∈⋯××⋯

over a common index of size  is defined by summing over that index.

For example, it ∈× and ∈× , their contraction over the

shared index of size  is the matrix product ⋅∈× , where

⋅ 




.

Scalar regression can be performed by an MPS, which consists of

 third-order tensors        , where each

 ∈
  ×× ,

with bond dimensions    and   for ≤ 

≤. We index the modes of   as  

 · Given a

one-dimensional input ∈, we encode it into a “physical” vector

 











cos




sin


∈,

and write its components as  if  is the th pixel in a

sequence. The scalar output of the MPS is then the full contraction

   
 


 









  

 



 ,

which yields a single real number since    .

This can be extended to -class classification. To produce an 

-dimensional output vector ∈ for classification, we promote

exactly one of the site-tensors—say the th tensor—to fourth order:

  →
∈

   ×× ×
,

with entries     


,      . All other tensors remain third

order. The  th component of the MPS output is

   
  
  








≠



 

 





×    


 .

Stacking all  outputs gives the vector

      
∈,

which can then be passed through a softmax if desired for

classification probabilities.

Ⅱ. Method

In the MPS-based classifier, the full-resolution input has length 

×  , so a direct training of an MPS of length  can be

computationally demanding. To accelerate learning, we adopt a

curriculum learning strategy [5] in which we gradually increase the
input resolution. Concretely, we first apply average pooling with

window size × to each × image, so that each block of

× pixels is replaced by its mean intensity. The pooled image

then has size ×  , and we train a corresponding MPS

of length low . Although this low-resolution MPS has

only low sites, we would like its contractions to mimic those of the

full-resolution model. Let   be the th MPS tensor and ∈

the local feature map for a pooled pixel  . Normally the contraction



at site  is  ⋅∈
  × . To simulate the effect of

having  consecutive pixels at full resolution, we instead take the

matrix power  ⋅

, i.e., raise the site-matrix to the 

th power. This “exponentiated” contraction embeds the contributions

of  identical pixels into a single step, without explicitly unfolding

the pooled block back into many sites.

Finally, to ensure that the pooled pixels which originally formed

spatially contiguous blocks remain adjacent in the one-dimensional

MPS chain, we order the sites according to a Z-order (Morton) curve

[6] rather than the usual row-major scan (see Figure 1). This

space-filling curve preserves locality: pixels that were neighbors in

× blocks remain neighbors in the MPS. We gradually reduce the

exponent (or increase the resolution) until we recover the full

 MPS. This curriculum allows us to reach the full-resolution

model much more quickly than naively training on high-resolution

data from the outset (see Figure 2 for a comparison).

Figure 1. A × Z-order curve.

Figure 2. Accuracy vs. time for MPS training.

Ⅲ. Conclusion

In this work, we have introduced a novel curriculum learning

framework for MPS models applied to high-dimensional sequence data

such as images. By starting from low-dimensional inputs and

gradually increasing resolution, our method accelerates convergence

and reduces overall training time. The use of a Z-order space-filling

curve ensures that spatial locality is preserved throughout the

curriculum.

Empirical evaluations on MNIST demonstrate that our curriculum

MPS achieves comparable or superior classification accuracy to naive

full-resolution training, while requiring fewer contraction operations in

the early stages and converging more rapidly. Moreover, our approach

preserves parameter efficiency and interpretability inherent to MPS

representations. We believe that curriculum learning via exponentiated

contractions and locality-preserving orderings provides a paradigm for

scalable tensor network training.
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