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Abstract

A curriculum learning framework for Matrix Product State (MPS) models that accelerates training on high-dimensional data
is proposed. Starting from low-dimensional inputs, we train a shorter MPS of length /V by replacing consecutive site-wise
contraction with matrix power operations. A Z-order curve preserves spatial locality when linearizing images into the tensor
chain. As the curriculum advances, we gradually reduce the pooling window (or exponent) until the full-resolution MPS is
recovered. Experiments on MNIST show faster convergence and comparable final accuracy.

I. Introduction

In modern machine learning, high-dimensional data such as images or
time series often exhibit strong local correlations that can be exploited
to reduce model complexity [1]. One promising approach is to
represent such data sequentially and process it with tensor network
models originally developed in quantum many-body physics. In
particular, the Matrix Product State (MPS) architecture [2, 3] provides
a highly parameter—efficient ansatz by decomposing a full tensor of
order N into a chain of low-order tensors interconnected by
moderate-size “bond” dimensions [4].

Despite their representational power, training an MPS on
full-resolution inputs can be expensive: the number of tensor
contractions grows linearly in V, and the optimization landscape
becomes more complex as the chain length increases. To mitigate
these issues, we introduce a curriculum learning strategy that
progressively increases input resolution during training, allowing the
model to first capture coarse-grained structure before refining fine
details.

A tensor of order d is a multidimensional array
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Scalar regression can be performed by an MPS, which consists of
N third-order tensors 4V, A, .., 4™ where each
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with bond dimensions my=my=1 and m,=m for 1<k

< N—1. We index the modes of A" as Aii"') - Given a
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one-dimensional input € [0,1], we encode it into a “physical” vector
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and write its components as %(zk) if x, is the kth pixel in a
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sequence. The scalar output of the MPS is then the full contraction
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which yields a single real number since ¢, =i, =1.
This can be extended to L-class classification. To produce an L

~dimensional output vector yER® for classification, we promote

exactly one of the site-tensors—say the Ath tensor—to fourth order:
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order. The Ith component of the MPS output is
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Stacking all L outputs gives the vector
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which can then be passed through a softmax if desired for
classification probabilities.

II. Method

In the MPS-based classifier, the full-resolution input has length V
=28 %28 =784, so a direct training of an MPS of length NV can be
computationally demanding. To accelerate learning, we adopt a
curriculum learning strategy [5] in which we gradually increase the
mput resolution. Concretely, we first apply average pooling with
window size HX W to each 28 < 28 image, so that each block of
HX< W pixels is replaced by its mean intensity. The pooled image
then has size (28/H) x (28/ W), and we train a corresponding MPS
of length N =784/ HW. Although this low-resolution MPS has
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only NV, sites, we would like its contractions to mimic those of the
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full-resolution model. Let A*) be the kth MPS tensor and o(z) ER?

the local feature map for a pooled pixel z. Normally the contraction
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at site k is A% - p(z)ER . To simulate the effect of
having HW consecutive pixels at full resolution, we instead take the

matrix power (4® . qﬁ(m))myy ie, raise the site-matrix to the AW
th power. This “exponentiated” contraction embeds the contributions
of HW identical pixels into a single step, without explicitly unfolding
the pooled block back into many sites.

Finally, to ensure that the pooled pixels which originally formed
spatially contiguous blocks remain adjacent in the one-dimensional
MPS chain, we order the sites according to a Z-order (Morton) curve
[6] rather than the usual row-major scan (see Figure 1). This
space-filling curve preserves locality: pixels that were neighbors in
H> W blocks remain neighbors in the MPS. We gradually reduce the
exponent (or increase the resolution) until we recover the full
N="784 MPS. This curriculum allows us to reach the full-resolution
model much more quickly than naively training on high-resolution

data from the outset (see Figure 2 for a comparison).

Figure 1. A 16 X 16 Z-order curve.
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Figure 2. Accuracy vs. time for MPS training.

II. Conclusion

In this work, we have introduced a novel curriculum learning
framework for MPS models applied to high-dimensional sequence data
such as images. By starting from low-dimensional inputs and
gradually increasing resolution, our method accelerates convergence
and reduces overall training time. The use of a Z-order space-filling
curve ensures that spatial locality is preserved throughout the

curriculum.

Empirical evaluations on MNIST demonstrate that our curriculum
MPS achieves comparable or superior classification accuracy to naive
full-resolution training, while requiring fewer contraction operations in
the early stages and converging more rapidly. Moreover, our approach
preserves parameter efficiency and interpretability inherent to MPS
representations. We believe that curriculum learning via exponentiated
contractions and locality—preserving orderings provides a paradigm for
scalable tensor network training.
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