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요 약  
본 논문은 이동식 안테나를 활용하여 채널 상태를 최적화하고, 이를 통해 다중 사용자 시스템의 성능을 향상시키는 

방식을 다룬다. 특히, 딥러닝 기반 접근법을 통해 이동식 안테나의 위치와 빔포밍 벡터를 동시에 최적화함으로써, 합 

전송률 최대화 문제를 효과적으로 해결하는 알고리즘을 제안한다. 모의 실험을 통해 제안된 기법의 우수성을 검증한다. 

 

Ⅰ. 서 론  

6G 이동 통신 기술의 발전에 따라, 고스펙트럼 효율, 

에너지 효율, 초저지연 등의 요구가 점차 증가하고 있다. 

이러한 요구를 충족할 수 있는 기술로 이동식 안테나 

(Movable antenna)가 주목받고 있다 [1]. 

이동식 안테나는 안테나의 위치를 능동적으로 

조정함으로써 간섭을 효과적으로 완화하고, 스펙트럼 

효율을 향상시키며, 채널 상태를 최적화하여 전반적인 

통신 성능을 개선할 수 있다. 이는 기존 안테나 선택 

기법과 유사하지만, 적은 수의 안테나로도 높은 공간 

효율을 달성할 수 있다는 장점이 있다. 

다만, 실시간으로 안테나 위치를 조정하려면 짧은 시간 

내에 최적의 안테나 위치와 이에 대응하는 빔포밍 

벡터를 효율적으로 계산해야 하는 문제가 존재한다. 

이러한 문제를 해결하기 위해, deep neural network 

(DNN)를 활용하여 빠르게 빔포밍 벡터를 최적화하는 

기법이 최근 multicast 환경에서 연구된 바 있다 [2].  

본 논문에서는 이를 unicast 빔포밍 최적화로 

확장하고, DNN 을 활용하여 안테나의 위치와 빔포밍 

벡터를 동시에 최적화하는 새로운 체계를 제안한다. 
 

Ⅱ. 시스템 모델 및 최적화 문제 

한 개의 고정식 안테나를 가지고 있는 M 명의 

사용자들과 N 개의 이동식 안테나를 가지고 있는 

기지국이 무작위로 배치되어 있는 다중 사용자 하향링크 

시스템을 고려한다. 사용자의 집합을 {1,2, , }M= 로 

정의하였다. 이동식 안테나들은 각각 RF (Radio 

frequency) 체인과 연결되어 있어 길이가 D 인 선분 

내에서 자유롭게 움직일 수 있다. n 번째 안테나의 

위치는 
n

t ,  0, , 1n N − 이고 
0 1

0
N

t t D
−

    를 

만족해야 한다. m 번째 사용자의 수신 신호는 다음과 

같이 표현된다.  
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일반적인 Rician 페이딩 모델에 의해 다음과 같이 표현할 

수 있다. 
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수신 신호 (1)을 기반으로, 개별 사용자에 대한 전송율 

m
R  및 전체 사용자 전송율의 합 R 는 다음과 같이 

표현할 수 있다.  
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및 간섭 비율 ( )
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본 논문에서는 다중 사용자 하향링크 시스템에서 

전송율 합 R 을 최대화하면서 기지국 안테나의 위치 

t 와 빔포밍 벡터 v 를 최적화하는 문제를 다룬다. 

기지국 송신 전력 제한 조건 및 안테나 위치 제한 조건 

하에 다음과 같이 정의할 수 있다. 
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문제 (6)의 마지막 제한 조건은 안테나 간 커플링을 

피하기 위한 최소 거리 조건이다. 상기 문제 (6)은 

비볼록 문제로, 전통적으로 반복적 최적화를 통해 해를 

도출하지만 계산 복잡도가 크다. 이를 해결하기 위해, 본 

논문에서는 딥러닝 기반 알고리즘을 제안한다. 
 

Ⅲ. 딥러닝 기반 안테나 위치 및 빔포밍 최적화 

이번 장에서는 안테나 위치 t  와 빔포밍 벡터 v 을 

최적화하는 딥러닝 기법을 순차적으로 제안한다. 

A. 안테나 위치 최적화 

딥러닝 기반 안테나 위치 최적화 기법은 { , }θ β 로부터 

인접한 안테나 간 상대 거리 1

1
{ }

N

i i

−

=
 을 얻어 간접적으로 

학습한다. 따라서 안테나의 위치는 다음과 같이 표현된다.  
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개의 병렬 계층의 곱으로 얻을 수 있다 [3]. 
 

max

1

1
1

n

i

zz

n N zz

i

ee

ee
−

=

   
  =  
  +  

.            (8) 

 

max
( 1)D N d = − − 는 문제 (6)의 2 번째 제한 조건을 

만족하기 위한 조정이고, 식 (7)과 (8)을 통해 안테나의 

위치를 얻을 수 있다. 따라서 제안 기법의 DNN 입-출력 

관계는 ( , ; )=
t t

t θ β Θ 로 표현된다. 여기서 
t

Θ 는 안테나 

위치 최적화를 위한 학습 변수로 정의된다.  

B. 빔포밍 벡터 최적화  

제안된 기법은 빔포밍 벡터를 직접 학습하는 대신, 

이를 구성하는 주요 변수 { : }
M

m
p m p 와 
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M

m
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벡터는 최적성의 손실 없이 하향링크 송신 전력 p  와 

가상의 상향링크 송신 전력 q 와 함께 다음과 같이 

표현할 수 있다 [2]. 
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벡터를 최적화하기 위한 학습 변수로 정의된다. 함수 
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그림 1. SNR 대비 합 전송률 비교 

식 (10)에서 
vΘ
는 

tx
( ( ), ; )P

tv Θ v
h Θ 이고, 

tΘ
는 

( , ; )
t t
θ β Θ 이다. 상기 문제의 변수 

t
Θ  와 

v
Θ 는 mini-

batch 기반의 stochastic gradient descent (SGD) 

알고리즘으로 최적화할 수 있다. 
 

Ⅳ. 모의실험 결과 

이번 장에서는 딥러닝 기반 안테나 위치 및 빔포밍 

최적화 기법의 성능을 검증한다. 각 large-scale fading 

계수는 
0 0
( / )

m m
d d

  −
= 로 주어지고 기지국과 m 번째 

사용자 간의 거리 
m

d 은 랜덤하게 50 ~ 70m로 설정한다. 

또한 
0

10 dB = , 기준 거리는 
0

30md = , path-loss 

지수는 3 = 으로 둔다. DNN 파라미터 { , }
t v

Θ Θ 를 

최적화하기 위해서 Adam optimizer 를 사용하였고, 

학습률은 10-4로 설정한다.  

그림 1 은 5, 6, 100M N = = = 에서 signal-to-noise 

ratio (SNR) 대비 합의 전송율을 비교한다. 이때, 

MA 와 FPA 는 각각 이동식 안테나와 고정식 안테나를 

나타낸다. 그래프를 보면 제안 기법이 전통적인 빔포밍 

기법인 maximum ratio transmission (MRT)와 zero-

forcing (ZF)에 비해 향상된 성능을 보임을 알 수 있고 

이동식 안테나가 고정식 안테나와 비교하여 향상된 

성능을 보이는 것을 관찰할 수 있다. 
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