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요 약  

 

기존 Hybrid 임베딩 연구는 문체와 의미 임베딩을 고정 비율로만 조합하고, 가중치 변화에 따른 검색 성능 영향은 충분

히 검토하지 않았다. 본 연구는 문체적 특성이 뚜렷한 문학 문서를 대상으로, 의미 임베딩(text-embedding-ada-002)과 

문체 임베딩(text-embedding-3-small)을 다양한 비율로 조합한 하이브리드 임베딩을 설계하고, 검색 성능을 정량적으로 

분석한다. 실험에는 Project Gutenberg 의 영어 문학 원문 20 편을 활용하였으며, 평가 지표로 Precision@k, Cosine 

Similarity, Diversity Score 를 사용한다. 이를 통해 문체-의미 균형에 따른 최적 가중치 조합을 도출한다. 

 

Ⅰ. 서 론  

문학 작품과 같은 장문의 스토리 기반 문서를 검색하

거나 생성할 때, 문서에 내재한 의미와 문체 모두를 정밀

하게 반영하는 것이 중요하다. 기존의 단일 임베딩 모델

은 문체와 의미를 동시에 분석하기 어렵다는 한계가 있

다. 이를 보완하기 위해 Hybrid 임베딩 기법이 제안되었

으며 [9], 저자들의 기존 연구 [1]에서는 의미와 문체 

임베딩을 조합해 문학 문서를 분석하였다. 그러나 해당 

연구는 문체-의미 임베딩의 가중치를 5:5 로 고정하고, 

가중치 비율 변화에 따른 성능 영향을 정량적으로 검토

하지 않았다. 

  본 연구는 문체적 특성이 강한 문학 작품을 중심으로, 

두 임베딩의 조합 비율(𝛼)을 변화시키며 검색 성능을 분

석하고, 최적 가중치 구성을 도출하고자 한다. 이를 통해 

의미–문체 조합의 영향력을 파악하고, 문서 분석 성능 개

선에 기여하고자 한다. 

 

Ⅱ. 관련 연구 

2.1. 단일 임베딩 모델의 한계 - 대부분의 검색·생성 시

스템은 BERT [6]나 Ada [7] 등 단일 언어 모델에서 추

출한 임베딩 벡터로 질의와 문서를 표현한다. 이러한 방

식은 구현은 간결하지만 문체와 의미를 동시에 정밀하게 

포착하기 어렵다는 지적이 있다 [3]. 특히 문학 작품이

나 법률 판례처럼 문체의 중요도가 높은 도메인에서는 

스타일-내용 간 불일치로 인해 검색 정확도와 생성 품질

이 저하되는 현상이 빈번히 나타난다.  

2.2. 문체–의미 혼합 임베딩 연구 동향 - CLIP 등 일부 

멀티모달 모델은 의미 표현과 문체적 다양성을 함께 포

착하는 구조를 제안하였다 [2][4]. 이들 연구는 공통적

으로 문체와 의미 신호를 별도로 학습한 뒤, 가중합

(Weighted Sum)이나 대조 정렬(Contrastive Alignment)

을 통해 재결합함으로써 단일 임베딩 대비 표현력이 향

상된다는 점을 강조한다. 

2.3. 연구 공백 및 기여 - 선행 연구는 문체–의미 가중

치 비율(α)이 성능에 미치는 영향을 정량적으로 비교하지 

않았고, 문학처럼 문체 변동성이 큰 환경에서도 충분히 

검증되지 않았다.  

  본 연구는 이를 보완하기 위해 문체 특화(text-

embedding-3-small)와 의미 특화(text-embedding-

ada-002) 임베딩을 조합한 하이브리드 구조를 설계하고 

[7], 다양한 α 값에서의 성능을 비교해 최적 가중치를 

도출한다. 

 

Ⅲ. 연구 방법 

3.1. 하이브리드 임베딩 구조 

본 연구에서 제안하는 하이브리드 임베딩(𝐸ℎ𝑦𝑏)은 다음

과 같이 정의된다: 
 

𝐸ℎ𝑦𝑏 =  𝛼𝐸𝑠𝑡𝑦𝑙𝑒 +  (1 − 𝛼)𝐸𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 

 

여기서𝐸𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 은 OpenAI 의 의미 기반 임베딩 모델인 

text-embedding-ada-002 로부터 생성되며, 𝐸𝑠𝑡𝑦𝑙𝑒은 문

체적 표현을 반영할 수 있는 text-embedding-3-small 

모델로부터 생성된다. 두 모델은 동일한 출력 차원(1536)

을 가지므로 정규화 없이 가중 평균이 가능하다.  𝛼 ∈

{0.2, 0.3, 0.4, 0.5, 0.6, 0.8}의 다양한 비율을 실험하여 문체



와 의미 간 가중치 변화가 검색 성능에 미치는 영향을 

분석하였다 (그림 1 참조). 

 
그림 1 하이브리드 임베딩 기반 문서 검색 시스템 구조 

 

3.2. 전처리 파이프라인 - 입력 데이터는 Project 

Gutenberg 에서 수집한 영어 문학 작품 원문 20 편으로 

구성되며[5], 각 작품은 약 200단어 단위로 청크 분할된

다. 이후 각 청크에 대해 OpenAI API 를 사용하여 두 임

베딩 모델 각각으로 임베딩을 생성하고, 청크별 임베딩의 

평균값을 산출하여 문서 단위 벡터를 구성하였다. 이 벡

터들은 향후 검색 실험에서 하이브리드 가중치 적용의 

기반이 된다. 

 

Ⅳ. 실험 설정 및 평가 지표 

4.1. 데이터셋 구성 - 실험에는 서로 다른 작가의 문체

가 반영된 Project Gutenberg 의 영어 문학 원문 20 건을 

사용하였다[5]. 각 작가는 2~3 편의 소설을 기준으로 구

성되었으며, 각 작품은 수천 단어 이상의 긴 서사형 텍스

트로 구성되어 있어 문체 정보 및 의미 정보 모두를 임

베딩 실험에 활용하기에 적합하다. 

4.2. 임베딩 및 검색 시스템 구성 - 각 문서 및 질의에 

대해 두 임베딩 모델의 벡터를 생성하고, 설정된 𝛼값에 

따라 가중 평균하여 하이브리드 벡터를 구성하였다. 검색

은 FAISS 라이브러리 [8]를 이용한 코사인 유사도 기반 

최근접 이웃 검색 방식으로 수행되며, 각 설정별로 동일 

질의 집합에 대해 평가하였다. 

4.3. 평가 지표 

• Precision@k: 검색 결과 상위 k 개 문서 중 동일 작

가의 다른 작품이 포함된 비율로, 문체 유사성 기반 

검색 성능을 나타낸다. 

• Cosine Similarity: 질의 임베딩과 가장 유사한 검색 

문서 간 유사도를 평균하여, 검색된 내용의 의미 일

관성을 측정한다. 

• Diversity Score: 검색 상위 k 개 벡터 간 평균 유사

도를 역산하여 계산하며, 결과의 표현 다양성과 중복

도를 평가한다. 

 

Ⅴ. 실험 결과 및 분석 

본 연구에서는 문체 임베딩과 의미 임베딩 간 가중치 

비율을 조절하는 하이퍼파라미터 𝛼 값을 0.2 부터 0.8 까

지 변화시키며 추천 성능을 정량적으로 비교하였다. 실험

에는 Precision@5, Average Cosine Similarity, Diversity 

Score 의 세 가지 평가지표를 사용하였으며, 각각은 추천 

정확도, 의미 유사도, 결과 다양성을 측정한다. 

실험 결과, Precision@5 는 𝛼 = 0.5~0.7 구간에서 최고 

성능을 보였고, 𝛼가 너무 낮거나 높을 경우 0.32 로 소폭 

하락하였다. 이는 임베딩 간 가중치 균형이 추천 정확도

에 중요한 영향을 준다는 점을 시사한다 (그림 2 참조). 

한편, Diversity Score 는 𝛼 증가에 따라 급격히 감소하

는 양상을 보였다. 𝛼 = 0.2에서는 0.1995 로 시작하여, 

𝛼 = 0.8에서는 0.0408 까지 감소하였다. 이는 의미 임베

딩 중심의 추천 방식이 결과 다양성 측면에서는 한계를 

가짐을 의미한다 (그림 2 및 그림 3 참조). 

  마지막으로, Average Cosine Similarity 는 전 구간에서 

1.0000 으로 유지되어 의미 임베딩 기반의 유사도 계산

은 일정하게 유지됨을 확인하였다. 

 
그림 2 𝜶 값에 따른 Precision@5와 Diversity Score의 관계 

 
그림 3 𝜶 값에 따른 Diversity Score 변화 

본 실험은 𝛼 조절을 통해 추천의 정밀도와 표현 다양성 

간의 trade-off 조절이 가능하다는 점을 실증적으로 보

여준다. 

 

Ⅵ. 결론 

본 연구는 문체와 의미 임베딩의 가중치 조절이 문학 

기반 문서 추천 성능에 미치는 영향을 정량적으로 분석

했다. 실험 결과, 두 임베딩을 5:5 또는 7:3 비율로 조합

할 때 Precision@5 가 가장 높았고, 의미 임베딩 비중이 

높을수록 정밀도, 문체 임베딩 비중이 높을수록 표현 다

양성이 향상되는 경향을 보였다.  

 하이브리드 가중치 조절은 긴 문서 도메인에 적용 가능

하며, 향후 자동화 및 동적 조정 기법으로 확장될 수 있

다. 
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