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요 약  

 
본 논문은 결정 구조 정보를 바탕으로 물질 특성을 예측하는 그래프 신경망(GNN) 및 트랜스포머 기반 모델의 최근 발전 

방향에 대한 조사를 제공한다. 특히 각 모델의 아키텍처, 학습·추론 전략을 분석하고, 다체 상호작용 표현과 학습 

데이터의 분포와 같은 주요 과제를 어떻게 해결하고자 하였는지 고찰한다. 이에 따라 CGCNN 을 시작으로, 

Transformer 의 Self‑ Attention 구조를 채택하여 추가적인 상호작용을 고려한 Graphormer, 원자 사이의 3 체 

상호작용을 임베딩을 통해 활용한 M3GNet, 그리고 대규모 능동학습 데이터를 이원화된 기존 모델에 적용한 

MatterSim 까지의 흐름을 연대기 순으로 비교하였다. 본 논문은 모델 간 설계 선택과 데이터의 사용이 정확성과 계산 

효율성, 범용성에 미치는 영향을 논의하고, 향후 연구를 위한 방향성을 제시한다. 

 

Ⅰ. 서 론  

재료공학, 의약, 반도체 분야에 이르기까지 다양한 

분야에서 결정 구조의 기계적, 전기적, 화학적 물성을 

확인하는 것이 중요하다. 모든 물질에 대해 실험적인 

방법을 통해 물성을 확인하는 것에 대한 비용적인 

문제로, Density Functional Theory (DFT, 

범밀도함수이론) 등의 제일원리 계산을 통해 계산적인 

방법으로 이를 예측해왔다. 그러나 DFT 는 높은 

계산량을 필요로 하기 때문에 물질의 탐색과 설계 등에 

활용하기에 제약이 있었다.  

특히 인공지능을 이용한 물질의 탐색 및 구조의 

생성에 대한 연구가 활발해짐에 따라 탐색한 물질의 

특성과 모델의 성능을 빠르게 평가할 수 있는 신뢰성 

있는 방법이 필요해졌다. 이에 따라 기계 학습을 이용한 

결정 구조의 물성 예측 방법이 널리 연구되고 있다.  

 

Ⅱ. Graph Neural Network  

기계 학습을 이용하여 물성 예측을 하기 위해서는 

모델로 하여금 분자를 이루는 원자들 사이의 관계성과 

상호작용을 이해할 수 있도록 해야 한다. 이를 위해 

원자를 graph 의 node 로, 원자들 사이의 상호작용을 

edge 로 표현하는 Graph Neural Network(GNN)이 

사용된다. 이러한 edge 는 단순히 기존의 화학적인 

해석에서의 화학결합만을 의미하는 것이 아니라, 

기준으로 삼은 거리 이내에 존재하는 모든 원자들 간의 

상호작용을 다루게 된다. GNN 은 반복적인 단계를 통해 

주변 원자의 정보를 전달받음으로써 단순히 직접 

연결되어 있는 원자들에 의한 영향뿐만 아니라 구조 

전체에서 발생하는 상호작용과 그에 의한 성질을 다룰 

수 있도록 한다. 이는 다양한 모델에서 전파 함수.[1] 

또는 메시지 전달 (Message Passing)의 개념으로 

구현된다. [2] 

 

Ⅲ. 연구 동향  

본 논문에서는 GNN 구조에서 출발하여 모델의 정확성, 

계산 효율성, 범용성을 확대하기 위한 모델 설계의 

발전과 데이터의 사용을 시대 순서에 따라 다룬다.  

 

3.1. CGCNN 

CGCNN 은 결정 구조에 처음으로 그래프 합성 곱 

신경망을 적용한 모델로 구조로부터 물성을 직접 학습할 

수 있도록 하였다.[1] 입력으로 주어진 결정구조를 

그래프로 표현하여 원자에 대한 임베딩(노드)와 결합에 

대한 정보 (엣지)를 각각 생성한 후 두 임베딩에 의해 

결정되는 피쳐에 대해 컨벌루션 형태의 전파 함수를 

적용함으로서 주변 원자들에 의한 영향을 지속적으로 

반영한다. 이를 통해 마치 CNN 의 컨벌루션이 레이어가 

쌓임에 따라 Scope 가 확대되듯이 원자들 사이의 

상호작용이 전파된다. CGCNN 은 Materials Project 의 

데이터를 바탕으로 생성 에너지와 밴드 갭 등 DFT 를 

통해 계산된 8 개의 물성을 예측하였으며, 높은 정확도를 

달성했다. 

 

3.2. Graphormer  

Graphormer 는 기존의 GNN 이 edge embedding 을 

통해 원자와 원자 사이의 관련성을 다루고자 했던 것과 

달리 Self-Attention 을 통해 원자와 원자 사이의 

관계성을 다루는 모델이다 [3]. 인접한 원자 사이에서만 

메시지가 전달되던 기존 GNN 들과 다르게, 

Graphormer 는 분자구조를 완전 연결 그래프로 

가정하고 모든 노드 쌍에 대해 구조적 특징을 반영한  



표 1. 물성예측 모델의 구조와 데이터 사용 

Attention 을 적용한다. Graphormer 는 결정구조에서의  

물성 예측이 아닌 graph 를 활용하는 다양한 분자화학 

분야에서 Transformer 의 사용 가능성에 집중하여 

분자의 PCQM4M‑ LSC 데이터셋의 3 백 80 만개의 

데이터를 사용하였으나 후속 연구를 통해 Materials 

Project 데이터를 통해 학습함으로써 각 원자에 

가해지는 에너지와 힘 그리고 응력(Stress)를 예측하는 

Machine Learning Force Field(MLFF)나 그 외의 물성 

예측에 사용될 수 있음을 확인하였다. 

 

3.3. M3GNet 

M3GNet 은 원자 간 상호작용이 단순한 두 원자 

사이의 관계(거리 등)뿐만 아니라 각도 등 3 체 정보를 

통해 결정된다는 점을 반영한다 [4]. M3GNet 은 메시지 

전달 구조에서 거리와 각도에 대한 정보를 커널을 통해 

인코딩 하여 정보를 업데이트한다. 이를 통해 각 원자의 

에너지와 받는 힘에 대한 정확도가 향상되고 화학 

조성에 대한 범용성이 확대되었다. 또한 M3GNet 은 

Materials Project 의 데이터에 더해 구조 안정화 과정에 

대해 추가적인 데이터를 수집하여 대규모 데이터를 

확보하였다.  

M3GNet 은 MLFF 로 설계되었으며, 그 외의 물성을 

예측하기 위해서는 힘 장에 기반한 추가적인 연산이나, 

해당 물성에 대한 파인 튜닝을 요구한다. 그럼에도 

대규모 데이터를 통해 기존 직접 예측 모델들 보다 높은 

성능을 얻는 데에 성공하여, MLFF 을 위한 학습이 분자 

구조의 보편적 정보를 포착함을 입증하였다. M3GNet 은 

이전에 발표된 Graphormer 에 비해 더 작은 데이터로 

빠른 학습과 추론이 가능하고, 특히 주기적 결정구조에 

바로 활용할 수 있다. 

 

3.4. MatterSim 
MatterSim 은 본질적으로 새로운 구조를 제안하는 

대신 M3GNet 과 Graphormer 라는 기존의 성공적인 

모델을 응용하여 사용한다 [5]. MatterSim 은 안정적인 

분자구조에 한정되어있는 기존에 dataset 대신에 

불안정한 구조를 포함하여 다양한 온도와 압력 조건에 

대하여 DFT 연산을 수행함으로서 기존의 Materials 

Project 에 비해 수십 배의 데이터를 확보한다. 특히 

서로 다르게 초기화되어 학습된 모델들이 하나의 구조에 

대해 서로 다르게 추정하는 불안정성이 존재하였을 때, 

해당 데이터 분포에 대한 학습이 부족하다고 판단하고, 

해당 데이터 분포에 해당하는 데이터를 DFT 를 통해 

추가적으로 생성하는 능동 학습(Active learning)을 

활용한다. 이러한 방대한 추가적인 데이터와 능동 학습을 

통해 MatterSim 은 기존 모델들에 원자 사이의 

상호작용에 대한 방대한 정보를 추가적으로 

제공함으로서 MLFF 와 물성 예측 모두에서 폭넓은 성능 

향상을 보여주었다. 또한 불안정한 구조에 대한 데이터를 

바탕으로 안정된 결정구조가 아닌 비정형 구조나 

분자들의 동역학적 분석 등으로 확장할 수 있었다. 

 

Ⅳ. 결론  

본 조사에서는 결정구조로부터 물성을 예측하는 

인공지능 모델들의 발전을 CGCNN, Graphormer, 

M3GNet 그리고 MatterSim 을 중심으로 살펴보았다. 

CGCNN 은 그래프 합성 곱을 도입하여 구조 기반 물성 

예측의 가능성을 최초로 입증하였고, Graphormer 는 

기존의 GNN 에 Transformer 의 활용 가능성을 보였으며, 

M3GNet 은 3 체 정보를 활용한 개선으로 예측 정확도를 

크게 향상시켰다. MatterSim 은 데이터 분포의 대대적인 

확장과 능동 학습의 적용으로 기존의 M3GNet 과 

Graphormer 에비해 성능과 범용성의 향상을 보여주었다. 

표 1. 은 본 논문에서 다룬 네 모델에 대해 구조와 

사용한 데이터셋의 크기를 보여준다. 네 모델 모두 

구조의 그래프 표현에 기반하지만 아키텍처와 데이터의 

발전에 따라 예측 범위가 확장되고 오차가 줄어드는 

추세를 확인할 수 있다. 특히 MatterSim 의 등장은 개별 

분자의 물성 예측을 넘어, 다양한 원자 분포와 조건에서 

시뮬레이션이 가능한 범용 플랫폼으로의 발전 가능성을 

보여준다. 향후 연구에서는 MatterSim 과 같은 범용 

모델을 활용한 전이학습이 활발해질 것으로 전망된다. 

궁극적으로, 인공지능 기반 물성 예측 모델은 전통적 

계산 방법의 한계를 극복하고 새로운 재료 발견을 

가속화하는 핵심 도구로 활용될 것으로 기대된다. 
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 Structure Dataset size 

CGCNN 
Graph representation 

+ Convolution Layer 30K 

Graphormer 
Graph representation 

+ Self-Attention 3.8M 

M3GNet 
GNN 

+ 3Body encoding 180K 

MatterSim 
Graphormer 
and M3GNet 17M 


