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Input: o)A E A SF {(max_flops, max_mem)}, rounds R,
prune interval AT

Output: 224 24 ggng 6
Initialize global 8°
for t=1 to R do
for each client k in parallel do
0, « glt-13
LocalTrain(6,)
if t mod AT == 0 then
DynamicPrune(8,.B, 8. A)
end if
end for
8" « FedAvg({6,},{(n})
End for

2.2 QKD Y EL 7 FA7 &

AtE  Federated MagLoRA = QKD(&= 7] #u))
HESFY Ad e «F 2 JY ¥4 ZE FAHE ML
g2 E AE 7hssith 7 QKD ==v 7] A Sx(key
rate)9} HWEg Wy A gigs A TEE AA|,
MagLoRA 7} ©]E 7|49t & LoRA olflEle] AFE FHeo=
xAgt, === ZFolel mdo] mEA FHEHIIUAE

=]

N

Ir

%] ]
FedAvg & %3 Ff® Z2Y Zdo] o3 Agyg 37
AQke oy E ays g 4 o oA,
QKD =7} 9 g o] upel leLZ_ EHEJQ f‘f“é}ﬂb},
o]xg AT E
A% Rdo] g
2.3 Ad4d3

2 HolAE SST-2 dolHAS ol&s] 3 7Y <
ZopoldE(ZZ A thE FLOPsHiRe]l AhE 7t
AgeS Ayl QoA AlekstE MagloRA ¢ 1% 34
LoRAGr = 8, 4)2 nx H7s Anz A&st nd 4SS
@ AFE Qolm A A dib] g&F oz Hrksy] 93
B =RdAe 7jE AF3]E Faste dgy e adk
A 3% (Efficiency Score) & &-&3t}

N
ol
o

oL

Accuracy
FLOPs «10-6
sample
= Zdo] AHF @9 AARHELOPs) win] &2
A% 2 uehle, gl 245 ARuE 9 sAdas
A ;o] woe AL mEt. mebd, Ad Ak
2% AA A JHsAEe Wkske ol asdolch

Efficiency Score =

o

Avg. FLOPs | Trainable | Final

Method |Avg. Accuracy (%) | Final Loss /Sample Params | Rank

Eff. Score | Resource

Fixed r=8 86.7 0.31 105,728 7426 8 819.5 562
Fixed r=4 87.40 0.31 102,144 3842 4 855.5 2.90
MagLoRA 87.12 032 99,456 1,154 1 875.6 0.87
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