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요 약 
본 연구에서는 이질적 연산·메모리 제약을 지닌 엣지 클라이언트 환경에서 대형 사전학습 모델을 효율적으로 

파인튜닝하기 위한 Federated MagLoRA(Max‐flops and GPU Low-rank Adaption)를 제안한다. 각 클라이언트는 

클라이언트가 초당 처리 가능한 연산량과 사용할 수 있는 메모리 크기를 바탕으로 LoRA(Low-rank Adaption) 

어댑터의 목표 랭크를 동적으로 산정·프루닝하고, 로컬 업데이트된 파라미터를 FedAvg 로 통합해 이기종 분산 환경에서 

중앙 집중형 학습과 비슷한 정확도를 유지한다. GLUE-SST2 실험에서 MagLoRA 는 고정 랭크 대비 FLOPs/sample 을 

최대 30% 절감하고 파라미터 수를 85% 줄이면서도 정확도 손실을 0.6%p 이내로 억제했으며, QKD(Quantum Key 

Distribution) 네트워크 채널 예측·침입 탐지 등 리소스 제약형 엣지 ML(Machin Learning) 태스크에도 직접 적용 

가능함을 시사한다. 

 

Ⅰ. 서 론 

최근 자연어처리(NLP) 및 컴퓨터 비전 분야에서는 수십 억 

개 파라미터의 사전학습 모델이 다양한 다운스트림 작업에서 

최첨단 성능을 보인다. 하지만 다운 스트림 환경에서는 

고품질의 데이터를 통한 미세조정(Fine-tuning)이 필수적인데 

실제 환경에서의 클라이언트는 충분한 양의 방대한 고품질 

데이터를 보유하기 어렵다. 

이로 인해 데이터를 한 곳에 집중하지 않고도 효과적으로 

모델을 학습할 수 있는 연합 학습(Federated Learning, 

FL)[1]이 주목받고 있다. FL 은 각 클라이언트가 로컬에서 

학습한 파라미터만 중앙 서버에 전송하여 집계함으로써, 데이터 

프라이버시를 보호하면서도 높은 성능을 달성할 수 있는 분산 

학습 방법이다. 

그러나 FL 환경에서는 각 클라이언트의 연산 능력과 메모리 

용량은 매우 이질적이다. 예를 들어, 성능이 낮은 엣지 

디바이스에서는 모델의 모든 파라미터를 학습하거나 

업데이트하는 과정에서 과도한 메모리 및 연산 비용으로 인해 

심각한 성능 저하나 학습 지연이 발생할 수 있다. 이를 

완화하기 위해 LoRA(Low-Rank Adaptation)[2]와 같은 

파라미터 효율적 튜닝(PEFT) 기법을 활용한다. LoRA 는 가중치 

업데이트를 낮은 차원의 행렬 곱으로 대체하여 계산 및 메모리 

부담을 효과적으로 줄인다. 하지만 이때 모든 클라이언트에 

동일한 저차원 행렬의 크기(랭크, rank)를 적용하면 클라이언트 

간의 자원 활용 비효율이 발생한다. 예를 들면, 랭크가 클 경우 

저사양 클라이언트에서는 메모리나 연산이 과부하되고, 반대로 

랭크가 작을 경우 고사양 클라이언트는 표현력 부족으로 충분한 

성능을 달성하지 못하게 된다. 

본 논문에서는 FL 환경에서 각 클라이언트의 자원 제 약을 

고려하여, 각 클라이언트에 맞는 랭크를 동적으로 결정하고 

주기적으로 중요도가 낮은 랭크 성분을 제거하는 Federated 

MagLoRA(Max‐flops and GPU LoRA)를 제안한다. 이를 통 해 

이기종 분산 환경에서도 통신·메모리 비용을 최소화하면서 학습 

성능 저하를 억제한다. 또한 QKD(Quantum Key Distribution) 

네트워크의 채널 상태 예측·침입 탐지 같은 엣지 ML(Machin 

Learning) 태스크에도 직접 적용할 수 있음을 논의한다. 

 

Ⅱ. 본론 

2.1 Federated MagLoRA algorithm 

LoRA[2]는 사전학습된 가중치인 𝑊 = 𝑊0  + 𝐵𝐴 , 𝐵 ∈

𝑅𝑑𝑜𝑢𝑡∗𝑟  ∗ 𝑟, 𝐴 ∈ 𝑅𝑟∗𝑑𝑖𝑛 에서 여기서 r (랭크)은 추가할 행렬의 

차원으로   𝑟 ≪ 𝑚𝑖𝑛(𝑑𝑜𝑢𝑡, 𝑑𝑖𝑛)을 택해 파라미터 효율을 달성한다. 

FedAvg 는 각 클라이언트 k 가 로컬 업데이트한 모델 파라미터 

𝜃𝑘를 로 평균화하여 글로벌 모델을 동기화한다 

𝜃𝑔𝑙𝑜𝑏  ← ∑
𝑛𝑘

𝑁𝑘 𝜃𝑘                (1) 

이때 𝜃𝑘는 클라이언트 k 가 로컬에서 업데이트한 모델 

파라미터, 𝑛𝑘는 클라이언트 k 의 데이터 수, N 은 전체 데이터 

수이다. 클라이언트는 자신의 연산 자원인 

(𝑚𝑎𝑥_𝑓𝑙𝑜𝑝𝑠, 𝑚𝑎𝑥_𝑚𝑒𝑚𝑜𝑟𝑦) 를 이용해 목표 랭크인 𝑟𝑡𝑔𝑡 를 

결정한다. 𝑟𝑚𝑒𝑚 은 클라이언트가 최대 메모리를 사용할 때 

가능한 랭크, 𝑟𝑓𝑙𝑜𝑝 은 최대 연산량을 사용할 때 가능한 랭크로 

최종 목표 랭크는 이 값 중 작은 값으로 결정된다. 이를 식으로 

표현하면 (2)식과 같이 표현 가능하다. 𝑑𝑖𝑛 은 입력 차원으로 

입력 특성 벡터의 길이를 의미하며 𝑑𝑜𝑢𝑡은 출력 차원으로 LoRA 

적용 대상의 선형 계층의 출력 차원이다. 

𝑟𝑚𝑒𝑚  = [
𝑚𝑎𝑥𝑚𝑒𝑚𝑜𝑟𝑦

𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡
] , 𝑟𝑓𝑙𝑜𝑝  = [

𝑚𝑎𝑥𝑓𝑙𝑜𝑝𝑠

𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡  
] 

𝑟𝑡𝑔𝑡 = max (1, 𝑚𝑖𝑛(𝑟𝑚𝑎𝑥, 𝑟𝑚𝑒𝑚 , 𝑟𝑓𝑙𝑜𝑝𝑠 ))         (2) 

이후 정해진 주기인 𝛥𝑇 마다 현재 랭크 𝑟𝑐𝑢𝑟에서 중요도가 낮은 

성분을 제거하여 목표 랭크로 맞춘다.  

𝑆𝑖 =∥ 𝐵:,𝑖 ∥2 ∗ ∥ 𝐴𝑖,: ∥2                (3)  

여기에서[식 3] 𝑆𝑖는 랭크 𝑖 의 중요도를 나타내고 중요도는 

LoRA 저차원 행렬 내 특정 성분의 기여도를 의미한다. 𝐵 는 

LoRA 차원 축소 행렬로 원래 Weight 에 추가되는 보정값을 

생성하며 𝐴는 차원 복원 행렬로 입력 임베딩을 저차원에서 다시 

복원하는 역할을 한다. 해당 수식에 의해 기여도가 낮은 

성분부터 순차적으로 제거되며, LoRA 저차원 행렬의 해당 

성분의 𝐿2 − 𝑛𝑜𝑟𝑚 곱으로 계산된다. 이는 해당 성분이 전체 

업데이트에서 차지하는 기여도를 간접적으로 측정할 수 있으며, 

이 후 값이 작은 성분부터 순차적으로 제거(pruning)된다. 

제안된 알고리즘은 다음 수도코드로 요약된다 

Algorithm Federated MagLoRA 
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Input: 클라이언트 제약 {(𝑚𝑎𝑥_𝑓𝑙𝑜𝑝𝑠, 𝑚𝑎𝑥_𝑚𝑒𝑚)}, rounds R, 

prune interval 𝛥𝑇 

Output: 글로벌 모델 파라미터 𝜃  

Initialize global 𝜃0 

for t=1 to R do 

   for each client k in parallel do 

   𝜃𝑘  ←  𝜃{𝑡−1} 

   LocalTrain(𝜃𝑘) 

   if t mod 𝛥𝑇 == 0 then 

    DynamicPrune(𝜃𝑘 . 𝐵, 𝜃𝑘 . 𝐴) 

   end if 

end for 

     𝜃𝑡  ←  𝐹𝑒𝑑𝐴𝑣𝑔({𝜃𝑘}, {𝑛𝑘}) 

End  for 

 

2.2 QKD 네트워크 후처리 응용  

제안된 Federated MagLoRA 는 QKD(양자 키 분배) 

네트워크의 채널 상태 예측 및 침입 탐지 같은 후처리 ML 

태스크에도 적용 가능하다. 각 QKD 노드는 키 생성 속도(key 

rate)와 메모리 버퍼 한계에 대응해 연산 능력을 지정하고, 

MagLoRA 가 이를 기반으로 LoRA 어댑터의 랭크를 동적으로 

조정한다. 노드별로 경량화된 모델이 빠르게 수렴하면서도 

FedAvg 를 통해 공유된 글로벌 모델이 이질적 채널 환경 

전반을 안정적으로 학습하는 효과를 기대할 수 있다. 예컨대, 

QKD 노드가 주변 채널 상태에 따라 노이즈 패턴을 학습하거나, 

이상 신호를 감지하는 작업은 제한된 연산 환경에서도 적응형 

경량 모델이 요구된다. 

2.3 실험결과 

본 절에서는 SST-2 데이터셋을 이용해 3 개의 이질적 

클라이언트(각각 서로 다른 FLOPs·메모리 제약)를 가정한 

연합학습 시나리오에서 제안하는 MagLoRA 와 고정 랭크 

LoRA(r = 8, 4)를 비교 평가한 결과를 서술한다. 모델 성능을 

단순 정확도 외에도 연산 자원 대비 효율적으로 평가하기 위해, 

본 논문에서는 기존 연구[3]를 참고하여 다음과 같은 효율성 

지표(Efficiency Score) 를 활용한다. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐹𝐿𝑂𝑃𝑠
𝑠𝑎𝑚𝑝𝑙𝑒

∗ 10−6
 

해당 지표는 모델이 소비한 단위 연산량(FLOPs) 대비 얻은 

예측 정확도를 나타내며, 값이 클수록 정확도를 덜 희생하고도 

연산 효율이 높다는 것을 의미한다. 따라서, 자원 제약 

환경에서의 실제 적용 가능성을 평가하는 데 효과적이다.  

 

표 1. 평균 성능 및 자원 효율 비교표 

수렴 속도 및 정확도 측면에서 세 방법 모두 유사한 최종 

성능을 보였다[그림 2]. Fixed r = 8 모델은 10 라운드 기준 평균 

정확도 86.70%, Fixed r = 4 는 87.43%, 제안하는 MagLoRA 는 

87.13%로[표 1], MagLoRA 가 고정 랭크 방식과 유사한 수준의 

정확도를 유지함을 확인하였다. 특히 MagLoRA 는 초반 r=8 로 

시작한 후, 3 라운드부터 목표 랭크로 신속히 전환하여 4 라운드 

이내 안정적인 수렴을 달성하였다. 

 

그림 2. 연합학습 라운드별 정확도 비교 

그림 3. 연합학습 라운드별 통신 비용 비교 

하지만 연산 효율 측면에서 MagLoRA 는 샘플당 평균 

FLOPs 를 기존 고정 r = 8 대비 약 6.0%, r = 4 대비 약 2.6% 

절감하였으며[그림 3], 특히 파라미터 수와 통신량에서도 각각 

최대 85% 및 70% 수준의 절감 효과를 보였다. 이를 통해 

MagLoRA 는 성능 저하 없이 자원 효율성을 크게 향상시킴을 

입증하였다. 

마지막으로 효율성 지표[3]를 적용한 결과, Fixed r = 8 은 

평균 819.5, Fixed r = 4 는 평균 855, MagLoRA 는 평균 875 을 

기록하여 MagLoRA 가 가장 높은 효율성을 나타냈다. 즉, 

MagLoRA 는 연합학습 환경에서 계산·메모리·통신 비용을 

현저히 줄이면서도 정확도 손실을 최소화하는 우수한 성능을 

입증하였다. 

 

Ⅲ. 결론  

본 논문에서는 이기종 연합 학습 환경에서 사전학습 대형 

모델의 미세조정을 위한 federated MagLoRA 를 제안하였다. 각 

클라이언트가 자신의 연산 능력에 기반해 목표 랭크를 동적으로 

계산하며, 주기적 랭크 프루닝으로 불필요 파라미터를 

제거하고 FedAvg 로 글로벌 모델 동기화를 통해, 통신량·메모리 

비용은 대폭 절감(최대 85%/70%)되고, 정확도 손실은 0.6%p 

이하로 미미함을 보였다. 또한, QKD 네트워크의 채널 상태 

예측·침입 탐지와 같이 엣지 ML 태스크에도 MagLoRA 를 

적용할 수 있어, 리소스 제약이 심한 다양한 엣지 기반 

연합학습 및 QKD 네트워크 응용에서 실질적인 적용 가능성을 

보여준다. 
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