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Abstract

The study employs the use of a hybrid neural network and a multi-objective genetic algorithm to find the optimal trade-off in an
energy management system. The neural network is used in training and validating the load, solar, and wind data, while the multi-
objective genetic algorithm is used to find the optimal schedule and Pareto front that maximizes the profit and minimizes the
investment cost in energy trading.

I. Introduction

The rising global energy demand across sectors like residential,
industrial, transportation, and agriculture has driven the shift
from fossil fuel-based power generation to renewable energy
sources (RES), necessitating advanced technologies to enhance
energy system efficiency and sustainability [1]. Microgrids
(MGs), particularly at the village level, enable energy
independence in rural areas by integrating solar and wind
through prosumer-to-grid (P2G) mechanisms, though
challenges like intermittent RES, dynamic pricing, and varying
demand complicate energy scheduling and optimization [2].
The smart technology revolution, powered by Internet of
Things (IoT), artificial intelligence (AI), machine learning, and
digital twins (DT), facilitates real-time data analysis and system
modeling, with DT providing virtual replicas for monitoring
and control of MGs [3-5]. This study introduces a hybrid neural
network and multi-objective genetic algorithm (HNN-MOGA)
framework within a DT system to optimize village-level MG
operations, focusing on predicting load and generation,
optimizing trade-offs between profit, investment cost, and
enabling real-time P2G energy trading. Validated through a
MATLAB simulation of the Shinhyocheon village MG in South
Korea, the framework demonstrates effective energy
scheduling, demand response (DR), and resource allocation in
energy storage system (ESS).

The review highlights extensive research on energy
management systems (EMS), focusing on MG operations,
energy trading, and the integration of RES using advanced
techniques like multi-objective optimization, neural networks
(NN), and DT technology. Studies such as [1-3] employ
algorithms like non-sorting genetic algorithm IT (NSGA-II) and
particle swarm optimization (PSO) to optimize MG objectives,
including profit, and reliability, incorporating dynamic pricing
and P2G mechanisms. DT technology, as discussed in [4] and
[5], provides dynamic virtual representations of physical
systems, enhancing real-time energy management, predictive
accuracy, and system efficiency in applications like smart grids
and manufacturing. Research also addresses the challenges of
dynamic electricity pricing and DR, with works in [4,5]
developing models to optimize pricing strategies and energy
scheduling using game theory and reinforcement learning.
These studies underscore the role of advanced computational

methods and smart technologies in improving the efficiency,
reliability, and sustainability of modern EMS, particularly in
decentralized frameworks like village-level MGs [6].

I1. Method

The system model employs the use of NN to train the solar,
wind, and load data. The multi-objective genetic algorithm
(MOGA) is used to optimize the EMS operation.

Objective function:
Maximize profit (P, s,

Pprogic = Yie1 Lie1(Eserni(t) Ssen(t) At — Epyy i () Spyy (DAL —
CESS(Echar,i(t) + Edisc,i(t))At) (1)

where Ep,,; is the amount of power purchased by prosumers
in kilowatt-hours (kWh), S, (t)costs per kilowatt-hour for
power purchased from the grid in US dollars per kWh ($/kWh),
Ese i(t) is the amount of power sold by each prosumer back
to the grid in kilowatts (kWh), Sg.;(t) is revenue earned per
kilowatt-hour for power sold to the grid in US dollars per kWh
($/kWh), Cgss is the cost of ESS kWh of energy usage in US
dollars per kWh ($/kWh). E pq;(t) and Egy.;(t) is the
power stored and discharged from the battery for each
prosumer in kilowatt-hours (kWh), At is time in hours. N is
the number of prosumers, T is the time of the day.

Minimize investment cost (C;,,.s:)
Cinvest = Z?I:I(Cpu Scap + dewcap + CESSESScap) (2)

where Cp, be the cost per unit of solar capacity ($/kWh), Cq
be the cost per unit of wind capacity ($/kWh), Cgss is the cost
of the ESS capacity ($/kWh), S.,, be the solar capacity for
prosumer in (kW), We,, be the wind capacity for prosumer in
(kW), ESScqp be the battery capacity for prosumer in (kWh).

Figure 1 shows the hybrid optimization system with NN and
MOGA. From Figure 1, we can see that the NN is used to train
the load, solar, and wind data, while the MOGA optimizes the
energy system to find the Pareto front and optimal schedule.
The DT is used to monitor the operation and ensure an optimal
trade-off.
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Figure 1: Flowchart of hybrid optimization
Simulation result and analysis

The Simulation parameters

Prosumers 4, selling price $ 0.5, buying price $ 0.4.

Figure 2 shows the Pareto front of the objective function,
Figure 3 shows the energy sold versus bought during the trading
period, and Figure 4 shows the optimal energy schedule for the
load, battery, solar generation, and wind generation.
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Figure 2: Pareto front for the objective functions

The HNN-MOGA is a vital tool in EMS. From the Pareto front,
we have that the optimal values at the knee point are profit
$109497.00, investment cost $99788.51, and simulation time
45.957 seconds.
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Figure 3 Energy sold versus bought in the microgrid

Figure 4: Optimal energy schedule

Figure 3 shows that more energy is sold than bought from the
grid. Figure 4 shows the optimal schedule for prosumers.

II1. Conclusion

The HNN-MOGA framework, implemented in MATLAB, uses
NN to predict load, solar, and wind generation, while a MOGA
optimizes energy scheduling, DR, and resource allocation, as
demonstrated in the Shinhyocheon village MG case study in
Gwangju, South Korea, with Grida Energy, highlighting its role
in creating sustainable rural energy systems. The integration of
DT technology enables real-time monitoring, proactive
maintenance, and scenario analysis, enhancing forecasting
accuracy and economic efficiency, with future research
directions including scalability to more prosumers, and
leveraging 5G and federated learning for improved
communication and privacy in MG systems.
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