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요 약

반도체회로의복잡성증가로인해 테스트 비용과 시간이 증가하면서, 효과적인테스트용이화설계가필수 요소로 주목받고
있다. 본 논문에서는 기존테스트포인트삽입 기법의 한계점을극복하기 위해, 회로의구조적특성과 SCOAP 제어성 점수를
함께 고려한 머신러닝 기반 테스트 포인트 자동 선정 기법을 제안한다. 제안한 방식은 노드의 제어성뿐만 아니라 출력까지의
fanout 게이트 수를 입력 특성으로 추가하여 회로 전체의 테스트 효율을 향상시키는 데 중점을 둔다. ISCAS 89 벤치마크
회로를대상으로 한실험결과, 본 기법은 Random 및 SCOAP 기반 방식 대비 테스트패턴수를 각각 평균 7.0%, 10.1% 감소
시키는성능을보였다. 이를 통해머신러닝을활용한테스트포인트선정이테스트비용절감및테스트커버리지향상에효과
적임을 입증하였다.

Ⅰ. 서 론

반도체 회로의 복잡성 증가는 테스트 벡터의 생성과 결함 검출을 어렵게

만들고, 이는 테스트 시간과 비용을 증가시키는 원인이 되기 때문에 반도

체 회로 설계에 있어 효과적인 테스트 용이화 설계(DFT, Design for

Testability)는 점점더 중요해지고있다.[1] 대표적인테스트 용이화설계

기법중 하나인테스트포인트삽입(TPI, Test Point Insertion)은 회로 내

신호의 관측성(observability)과 제어성(controllability)을 향상시킴으로써

필요한 테스트 패턴 수를 줄이고 테스트 커버리지를 높이는데 기여한다.

그러나 기존의 테스트 포인트 삽입 방법은 설계자의 경험적 기준이나 휴

리스틱(Heuristic) 알고리즘에 의존하여, 복잡한 회로에서는 최적의 삽입

위치를 찾는 데 한계가 존재한다.[2]

최근 머신러닝 기법은 데이터 기반으로 복잡한 최적화 문제를 해결하는

데 강력한 성능을 보여주고 있으며, EDA 분야에서도 그 적용 가능성이

주목되고있다. 본 논문에서는회로의구조적특성데이터를기반으로, 기

존 머신러닝 기법을 활용하여 테스트 포인트 삽입이 필요한 노드를 예측

하는방법을제안한다. 이를 통해기존삽입기법대비테스트커버리지를

향상시키고, 테스트 비용을 절감할 수 있도록 한다.

Ⅱ. 본론

Ⅱ-1. 기존연구

회로의테스트 용이성(Testability)을 향상시키기위해다양한 테스트 용

이화 설계 기법들이 제안되어 왔다. 그 중 대표적인 방법으로는 스캔

(scan) 설계와테스트포인트삽입이있다. 스캔 설계는 플립플롭간 경로

를 시리얼하게 연결함으로써 내부 상태를 쉽게 제어하고 관측할 수 있도

록도와주는방식이며, 테스트커버리지향상및테스트패턴 최소화의장

점을 가지고 있어 대부분의 반도체 회로 설계에 필수적으로 포함된다.[3]

테스트 포인트 삽입은 회로 내부의 테스트 관측성과 테스트 제어성을 향

상시키기 위해 특정 회로 노드에플립플롭으로구성된 제어 또는 관측 포

인트를 추가하는 기법이다. 이를 통해 테스트 커버리지를 개선하고 필요

한 테스트 패턴 수를 줄이는 데 효과적이다.

기존의 테스트 포인트 삽입 기법은 대부분 SCOAP(Sandia Controllabili

ty Observability Analysis Program) 점수를 기반으로 한다. SCOAP은

논리게이트만을바탕으로 각노드에대한제어성과 관측성을정량적으로

계산하며, 점수가 높을수록 해당 노드는 제어하거나 관측하기 어렵다는

의미를 가진다. 따라서 점수가 높은 노드가 테스트 포인트 삽입의 후보군

으로 간주된다. SCOAP 점수 방식은 비교적 간단하고 빠르다는 장점이

있지만, 테스트 포인트의 위치 선정이 전체 회로 수준에서 최적이라고 보

장할 수 없다. 이는 SCOAP 점수가 각 노드의 제어성과 관측성을 정량화

하는 데 초점을 맞추기 때문이며, 회로 전체의 테스트 커버리지에 미치는

영향이나 노드 간 상호작용은 고려하지 않기 때문이다. 이를 해결하기 위

해 본 논문에서는 머신러닝을 활용하여 회로의 구조적 특성 데이터를 기

반으로 최적의 테스트 포인트를 자동으로 선정하는 기법을 제안한다.

Ⅱ-2. 제안하는 방식

본논문에서 제안하는 방식은 SCOAP의 제어성및 회로내 각노드에서

출력까지의 fanout 게이트수를 입력 데이터에 추가하여머신러닝모델을

통해 최적의 테스트 포인트를 자동으로 선정하는 기법으로, 회로 전체의

영향을고려하지못하는 기존 SCOAP의 단점을 개선한다. 머신러닝을통

해 테스트 포인트를 선정하는 과정은 크게 네 가지 단계로 나뉘며, 이를

Fig 1에 나타내었다. 각 단계별 세부 동작은 다음과 같다.



첫 번째로 학습 데이터 구축 단계에서는 학습에 사용할 일부 노드를 선

택하고선택된 노드의 구조적 특성 fanout 수와 SCOAP의 제어성을 추출

한다. 그런다음선택된노드에테스트포인트를삽입하여패턴수를계산

하고, 이를 통해 학습 데이터를 구축한다. 노드 선택 과정에서는 fanout

수를 기준으로 작은 값부터 큰값까지 고르게분포되도록 일부 노드를선

택함으로써, 다양한 구조적 특성을 반영한 학습 데이터를 구축하였다. 두

번째로 머신러닝 모델 학습 단계에서는 수집된 학습 데이터를 기반으로

분류 모델을 학습시킨다. 모델은 주어진 구조적 특성으로부터 테스트 포

인트삽입효과를예측하도록학습된다. 세번째테스트포인트후보예측

단계에서는회로내 모든노드에 대해 구조적특성을 추출하고 학습된모

델을 통해 테스트 포인트 삽입 시 효과적인 노드를 예측한다. 예측 결과

중 상위 노드를 테스트 포인트 후보로 선정한다. 마지막으로 테스트 포인

트 삽입 및 성능 평가 단계에서는 예측된 후보 노드에 테스트 포인트를

삽입하고 기존 테스트 포인트 삽입 방식과 비교하여 제안하는 방식과 패

턴 수 감소 효과 또는 테스트 커버리지 향상 정도를 평가한다.

Ⅱ-3. 실험 결과

본논문에서는 ISCAS 89 벤치마크회로를 대상으로제안한테스트포인

트삽입기법의 효과를 검증하였다, 실험은 Synopsys Design Compiler와

TetraMax를 사용하여수행하였으며, Design Compiler를 통해 회로를합

성하고, TetraMax를 통해 테스트 패턴 생성을 수행하였다.

표 1의 실험결과는 목표 테스트 커버리지를 99% 기준으로 하였으며, 목

표 테스트 커버리지를 달성하기 위해 필요한 최소 패턴 수를 측정하였다.

표 1에서 Test point는 회로에 삽입된 테스트 포인트 수이고 Random 방

식은노드를 무작위로선택하여 테스트포인트를 삽입한것이며, SCOAP

방식은 SCOAP 점수가 높은 노드를 기준으로 테스트 포인트를 삽입하였

다. 실험 결과 제안한 기법은 Random 및 SCOAP 방식에 비해 더 적은

패턴수로 99% 테스트커버리지를달성하는것을확인할수있었다. 특히,

제안한 기법은 평균적으로 Random 기준 대비 7.0%, SCOAP 기준 대비

10.1%의 패턴 수 감소율을 보였다.

이는 머신러닝을 통해 회로의 구조적 특성을 고려하여 테스트 포인트를

선택함으로써, 회로 전체의 테스트 효율을 효과적으로 개선할 수 있음을

보여준다.

Ⅲ. 결론

본논문에서는기존테스트포인트삽입기법의한계점을극복하기 위해,

회로의구조적 특성과 SCOAP 제어성점수를 함께고려한 머신러닝기반

테스트 포인트 자동 선정 기법을 제안하였다. 제안한 방식은 노드의 제어

성뿐만 아니라, 출력까지의 fanout 게이트 수를 추가 입력으로 활용하여

회로전체에미치는영향을반영하는특징을가진다. 실험 결과제안한방

식은 Random 및 SCOAP 기반 방식에 대비테스트패턴수를 평균 7.0%,

10.1% 각각 감소시키는 성능을 보여주었다. 이를 통해 머신러닝 기반 접

근이 테스트 효율을 높이는데 효과적임을 입증하였다.

이를 통해머신러닝 기반접근이테스트효율을 높이는데 효과적임을 입

증하였으며 향후학습데이터 다양성확대및 고도화된 머신러닝 모델 적

용을 통해 테스트 포인트 삽입 기법이 더욱 정교한 발전을 이룰 것으로

기대된다.
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Fig 1 Overview of the flow of the proposed method

Circuit

Name
Test point

Test coverage 99% 기준 Proposed 패턴

감소율(%)Random SCOAP Proposed

Pattern vs. random vs. SCOAP

s5378 5 94 100 82 12.8 18.0

s9234 10 135 134 125 7.4 6.7

s13207 10 89 89 80 10.1 10.1

s15850 10 99 104 94 5.1 9.6

s38417 10 140 150 136 2.9 9.3

s38584 10 137 142 132 3.7 7.0

평균 감소율(%) 7.0 10.1

표 1 실험결과: Test coverage 99% 기준 최소 패턴 수


