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요 약

본 연구는 제조 공정 자율화 및 자동 모델링을 위한 접근으로, STL, PCA, DTW, 클러스터링 기반의 시계열 패턴 분석을 통해 불필요한 변수를
제거하고, 이를 통해 모델의 예측 정확도와 추론 속도를 동시에 향상시키는 자동 변수 선택 기법을 제안합니다.

Ⅰ. 서 론

제조 산업에서 인공지능(AI)의 도입은 생산성 향상, 품질 고도화, 비용

절감 등을 실현할 수 있는 핵심 전략으로 주목받고 있으며, 특히 불량률

저감과 공정 최적화를 위한 실시간 예측 및 품질 분석 시스템은 스마트

제조의 기반 기술로 빠르게 확산되고 있습니다[1-3].

그러나 제조 공정은 설비 구성, 공정 조건, 원재료 등 다양한 요인에 따

라공정마다상이한특성을보이며, 이로 인해 생성되는시계열데이터역

시각기다른구조와복잡한패턴을갖습니다. 이러한데이터는다변량구

조, 추세와 계절성, 급격한 변동성, 노이즈 등 복합적인 특성을 내포하고

있어, 단순한통계요약이나기존피처 추출 기법으로는중요한정보를충

분히 반영하기 어렵고, 이를 그대로 활용할 경우 예측 모델 성능 저하로

이어질 수있습니다[4-5]. 더불어 시계열모델의 높은차원과복잡한 구조

는학습및추론속도를늦춰실시간대응이요구되는제조환경과충돌할

수 있습니다. 특히 초 단위 생산 주기를 가진 공정에서는 예측 속도가 이

를 초과할 경우 실효성이 떨어지게 됩니다. 따라서 정확도 향상 및 추론

속도 개선을 위해 공정별로 특화된 모델 설계가 필요합니다[6-7].

이에 본 연구에서는 제조 시계열 데이터의 특성을 효과적으로 반영할

수있는패턴기반자동 변수 선택기법을제안하고자 합니다. 구체적으로

는 STL(Seasonal-Trend decomposition using LOESS) 기법을 활용하

여데이터의계절성과추세를분리하고, 결함 제품과정상제품간의 주요

차이를 분석하기 위해 주성분 분석(PCA)을 적용합니다. 이어서, 시간 축

의 주요 패턴 차이를 정량적으로 파악하기 위해 Dynamic Time

Warping(DTW) 기반 유사도 계산과 클러스터링 기법을 활용함으로써,

예측에 실질적으로 기여하는 핵심 변수들을 자동으로 선별합니다.

이러한 접근 방식은 전체 시계열 정보를 모두 사용하는 기존의 고비용

모델들과 달리, 예측에 필요한 정보만을 선별적으로 활용함으로써 연산

효율성을 극대화할 수 있습니다. 또한, 시계열 데이터 내의 의미 있는 패

턴을 기반으로 변수 선택이 이루어지기 때문에, 도메인 지식이 부족하더

라도 모델이 데이터를 효과적으로 학습하고 일반화할 수 있는 구조를 갖

추게 됩니다.

따라서본연구는단순한예측성능향상을넘어, 실시간대응성과추론

속도, 그리고모델구축 비용 측면에서 제조 산업의 실질적인 요구를 충족

시킬 수 있는 실용적인 해법을 제시하고자 합니다.

Ⅱ. 본론

본 연구에서는 양품(정상 제품)과 불량 제품 간의 시계열 패턴 차이를

기반으로 주요 변수를 자동으로 선별하는 시계열 특화 Feature Selection

방법을 제안합니다. 본 방법론은 STL 기반 시계열 분해, 주성분 분석

(PCA), Dynamic Time Warping(DTW) 기반 유사도 분석, 클러스터링

기반 주요 변수 추출의 네 단계로 구성됩니다.

첫 번째 단계에서는 원본 제조 데이터를 양품과 불량 데이터로 분리한

후, 각 센서의 시계열 데이터를 STL 기법을 통해 계절성과 추세성, 잔차

로분해합니다. STL은 반복적인로컬회귀기반분해방식을통해데이터

의 장기 추세와 주기성을 효과적으로 분리할 수 있으며, 시계열의 구조적

패턴을 정밀하게 분석하는 데 유용합니다. 제조 데이터는 센서별로 시계

열 길이가 상이한 경우가 많기 때문에, 분석의 일관성을 확보하기 위해

zero-padding을 적용하여 길이를 통일합니다. 이를 통해 모든 시계열 데

이터를 동일한 기준으로 비교할 수 있도록 전처리를 수행합니다.

두 번째 단계에서는 STL로 분해된 양품 및 불량 데이터 각각의 Trend

및 Residual 성분에 대해 주성분 분석(PCA)을 수행합니다. PCA는 고차

원 시계열 데이터를 저차원 공간으로 투영하여 주요 정보를 유지하면서

데이터의 차원을 줄이는 기법입니다. 이를 통해 각 센서별로 양품과 불량

데이터를대표하는주성분을각각 1개씩추출하며, 이는 이후유사도비교

를 위한 핵심 입력으로 사용됩니다.

세번째 단계에서는 추출된주성분 기반의양품/불량 시계열간 유사도

를 측정하기 위해 Dynamic Time Warping(DTW) 알고리즘을 적용합니

다. DTW는 서로 다른 길이나 시간 축이 어긋난 시계열 데이터를 비선형

적으로 정렬하여 가장 유사한 경로를 찾아내는 알고리즘으로, 시계열 데

이터 간 정렬된 패턴 유사도를 정량적으로 계산할 수 있습니다. 특히,

zero-padding으로 인한 노이즈 영향을 최소화할 수 있어 제조 환경에 적

합합니다. DTW는센서별 양품과 불량데이터의 Trend 및 Residual 성분

에 대해 각각 유사도를 계산하며, 최종 누적 비용을 유사도의 기준값으로

사용합니다.

네번째단계에서는앞서계산된 DTW 유사도를기반으로모든센서를

클러스터링하여 유사도수준에 따라 세 개의 그룹으로 분류합니다. DTW

는상대적거리값이기 때문에절대적인판단기준으로 사용하기어렵습니

다. 따라서 유사도가 가장 높은 1군(Class 1)은 제거하고, 나머지 Class 2

와 Class 3에 해당하는 센서를 유의미한 변수(중요 변수)로 정의합니다.



이와 같은 과정은 Trend와 Residual 각각에 대해 개별적으로 수행되며,

두 구성요소에서모두 Class 2 또는 3으로분류된센서만을최종 Feature

로 선택합니다. 이 과정을 통해 추출된 변수들은 실제로 양품과 불량 간

패턴차이를명확히반영하고있는변수들이며, 시계열예측모델학습시

불필요한 변수 제거로 인해 계산 효율성과 예측 성능을동시에 확보할수

있습니다.

아래 표는 Kaggle 오픈소스 데이터인 Tabular Playground Series -

April 2022를활용한모델링 결과를나타낸것입니다. 해당 데이터셋은 13

개의 센서로 구성된 다변량 시계열 데이터로, 총 26,000개의 샘플을 포함

하며 이진 분류 문제를 위한 데이터입니다.

Method Model Accuracy Recall F1-Score

AutoGluon.TS DirectTabular 0.6645 0.6484 0.658

AutoGluon.TS AutoETS 0.5023 0 0

AutoGluon.TS DeepAR 0.4974 0.967 0.6569

AutoGluon.Tabular Weighted
-Ensemble 0.7925 0.8673 0.8062

AutoGluon.Tabular NeuralNet 0.7918 0.8717 0.8065

AutoGluon.Tabular CatBoost 0.7965 0.8461 0.8054

PyCaret Best model 0.728 0.755 0.734

TPOT Best model 0.761 0.715 0.751

TS DL Bi-LSTM 0.8369 0.8199 0.8421

Our TS DL Bi-LSTM 0.8919 0.9169 0.895

표 1 Tabular Playground Series - April 2022를 활용한 모델링 결과

표에따르면, 기존의 자동화모델링툴(AutoGluon, PyCaret, TPOT)은

시계열 데이터를 활용한 예측에서 충분한 정확도를 보여주지 못했으며,

일반적인 시계열 모델이 오히려 더 우수한 성능을 나타냈습니다. 더 나아

가제안된 Feature Selection 기법을적용한 결과, 전체 13개센서 중 10개

의센서만이의미가있는 Feature로 추출되었습니다. 이를 활용하여동일

한 모델 구조에 모델링한 결과 F1 Score가 기존 대비 5% 이상 향상되었

고, 10개 데이터 기준 추론 시간도 14초에서 12.7초로 줄어 약 9.3%의 연

산 시간 절감 효과를 확인할 수 있었습니다.

이처럼 본 방법론은 공정별 패턴의 차이를 정량적으로 분석하고, 정보

량이 높은 변수만을 선별적으로 활용함으로써 기존의 전체 시계열 입력

방식에 비해 연산 효율성과 실시간 예측 성능을 크게 향상시킵니다. 또한

도메인 지식 없이도 시계열 분석과 모델링이 가능하다는 점에서, 제조 현

장에서의 AI 도입 장벽을 낮추는 데 실질적인 기여할 수 있습니다.

Ⅲ. 결론

본연구에서는제조산업에서발생하는시계열데이터를보다효과적으

로 처리하기 위해, 양품과 불량 제품 간의 시계열 패턴 차이를 기반으로

주요 변수를선별하는 자동화된 Feature Selection 기법을제안합니다. 시

계열 데이터는일반적으로 고차원, 다변량구조를가지며, 시간에 따른추

세와 계절성, 센서 간 상호작용이 복잡하게 얽혀 있어, 모든 변수를 그대

로 활용하는 기존 모델은 예측 정확도뿐만 아니라 추론 시간 측면에서도

한계를 가집니다. 특히 실시간 품질 판별이 요구되는 제조 환경에서는 모

델의 성능뿐 아니라 예측 속도 또한 매우 중요한 요소로 작용합니다.

이를 해결하기 위해 본 논문이 제안한 방법은 예측에 불필요한 변수를

제거함으로써 모델 입력의 차원을 줄이고, 복잡한 시계열 분석에 필요한

계산량을 줄이는 동시에, 모델이 보다 중요한 정보에 집중하도록 유도합

니다.

실제 실험 결과에서도 제안한 시계열 Feature Selection 기법의 유효성

이 입증되었습니다. Kaggle 오픈소스 이진 분류 데이터셋을 활용한 실험

에서는, 전체 센서를 사용하는 모델 대비 제안된 Feature Selection 기반

시계열딥러닝 모델(TS DL)의 성능과 추론 속도가 모두향상되었습니다.

같은 구조의모델에서제안된 방법을적용한 모델의경우기존모델 대비

정확도와 F1 점수는 대략 5% 상승하였으며, 추론 시간은약 9.3% 단축되

었습니다. 이 결과는 의미가 없는 변수만 제거하더라도 모델 복잡도와 연

산량이의미있게줄어들수있음을보여주며, 시계열데이터내불필요한

정보의 제거가 실시간 예측 성능 향상에 기여함을 시사합니다.

또한 이러한 방법은 도메인 전문가의 수작업 없이도 주요 변수를 자동

으로추출할수 있어, 제조 AI 시스템의도입및확산에 있어진입장벽을

낮추고 실용성을 높여줍니다. 특히 생산 주기가 수 초 단위인 고속 제조

라인에서는 1초 이내의 예측 수행이 필수적인데, 제안된 시계열 Feature

Selection 기반 모델은 경량화된 구조를 통해이러한 요구를 충족할수 있

는 잠재력을 보여줍니다.

향후 연구에서는 현재의 Feature Selection 기반 구조를 더욱 경량화된

딥러닝 모델(GRU, CNN, Transformer 등)과 결합하여, 정확도손실없이

예측 속도를 더욱 개선할 수 있는 방안을 모색할 예정입니다. 이를 통해

다양한 공정 조건과 제품 특성 변화에 신속하게 대응하고, 실시간 의사결

정이 가능한지능형 품질 관리 시스템 구축에 실질적으로기여할 수 있을

것으로 기대됩니다.
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