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Method Model Accuracy Recall F1-Score
AutoGluon.TS DirectTabular 0.6645 0.6484 0.658
AutoGluon.TS AutoETS 0.5023 0 0
AutoGluon.TS DeepAR 0.4974 0.967 0.6569

AutoGluonTabular | ‘eighted | 07955 | 08673 | 08062
AutoGluon.Tabular NeuralNet 0.7918 0.8717 0.8065
AutoGluon.Tabular CatBoost 0.7965 0.8461 0.8054

PyCaret Best model 0.728 0.755 0.734

TPOT Best model 0.761 0.715 0.751
TS DL Bi-LSTM 0.8369 0.8199 0.8421
Our TS DL Bi-LSTM 0.8919 0.9169 0.895
o 2w 7)Ee] 253 2dd E(AutoGluon, PyCaret, TPOT)2
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