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요 약  

 
본 논문은 인접 프레임 간 차분의 차등적 어텐션을 이용한 트랜스포머 기반 자동 변조 분류 기법을 제안한다. 자동 변조 

분류(Automatic Modulation Classification, AMC)는 채널과 노이즈 환경을 전혀 알지 못할 때 변조 방식을 분류하는 방법이다. 기존 

트랜스포머 인코더의 멀티헤드 어텐션 구조를 이용한 자동 변조 분류 방식은 분류 정확도를 높이는 것에 한계가 있다. 따라서, 변조 

방식마다 인접한 프레임 간 차분의 크기와 위상이 다르다는 사실에서 착안하여 원본 데이터의 Q(query), K(key), V(value) 값으로 

차분기반의 차등적 어텐션 스코어를 함께 학습하여 모델 사이즈는 유지하면서 기존의 트랜스포머를 이용한 모델보다 더 높은 성능을 

가지는 자동 변조 분류 기법을 제안한다. 

 

 

Ⅰ. 서 론  

무선 통신 시스템이 급속도로 발전함에 따라 스펙트럼 자원을 

더욱 효율적으로 활용하기 위한 다양한 기술들이 등장하였다. 

특히, 지능형 통신 시스템에서 자동 변조 분류는 채널과 잡음 

정보와 같은 사전 지식 없이 송신 신호의 변조 방식을 식별하는 

것을 목표로 한다.  

기존의 자동 변조 분류 방법은 크게 확률 기반 방법과 특징 

기반 방법으로 나뉘어진다. 확률 기반 방법은 이론적인 모델을 

기반으로 최적의 분류 성능을 보이지만 계산 복잡도가 높아 

실시간 시스템에 적용하는 것에 어려움이 있다. 반면, 특징 기반 

방법은 구현은 간단하나 환경 변화와 잡음에 취약하다. 

최근에는 딥러닝 기술을 적용하여 신호로부터 특징을 

학습하고 분류를 수행하는 연구가 이루어지고 있다. 특히, 

CNN(Convolutional Neural Network)과 RNN(Recurrent Neural 

Network)기반의 모델이 적용되어 높은 성능을 달성하였으나 

각각 공간적, 시간적 종속성만을 제한적으로 활용하므로 복잡한 

시계열 변조 신호를 반영하는 것에는 한계가 있다.[1] 

이에 따라, 자연어 처리 분야에서 뛰어난 성능을 보이는 

트랜스포머가 도입되기 시작되었고 전역적인 의존성을 모델링할 

수 있는 셀프 어텐션을 기반으로 무선 신호 내의 복합적인 

패턴과 변조 특성을 효과적으로 학습할 수 있게 되었다.[2] 

본 논문에서는 인접 프레임 간 차분의 차등적 어텐션을 

이용한 트랜스포머 기반 자동 변조 분류 기법을 제안한다. 본 

논문에서 제안한 모델은 모델 크기는 유지하면서 변조 방식마다 

인접 프레임 간 차분의 크기와 위상이 일정한 패턴을 가진다는 

사실을 적용하여 기존의 모델보다 더 높은 분류 성능을 달성할 

수 있음을 보여준다.  

 

Ⅱ. 본론  

2.1 시스템 모델 

일반적으로 수신 신호 𝑦(𝑡)는 식 (1)과 같이 송신 신호 𝑠(𝑡)와 

무선 채널 임펄스 응답 ℎ(𝑡)와 가산성 백색 잡음(Additive white 

Gaussian noise, AWGN) 𝑛(𝑡)로 표현된다. 
𝑦(𝑡) = ℎ(𝑡) ∗ 𝑠(𝑡) + 𝑛(𝑡)               (1) 

변조 방식 𝑚은 후보 집합 ℳ에서 선택되고, 변조기 ℱ는 송신 

신호 𝑠(𝑡)를 변조 신호로 대응시킨다. 즉, 자동 변조 분류의 

목적은 식 (2)처럼 𝑠(𝑡)로부터 특징을 추출하여 변조 방식 𝑚을 

예측하는 것이다.[3] 

       𝑦(𝑡) = ℱ(𝑠(𝑡),𝑚) ∗ ℎ(𝑡) + 𝑛(𝑡)    (2) 

 

2.2 인접 프레임 간 차분의 차등적 어텐션을 이용한 

트랜스포머 구조 
그림 1 은 본 논문에서 제안하는 인접 프레임 간 차분의 

어텐션을 이용한 트랜스포머 구조를 나타낸다. 트랜스포머 

인코더를 통해 학습되기 전에 원신호는 프레임별 임베딩 

모듈에서 𝑅 의 슬라이딩 스텝 길이마다 𝐿 의 프레임 길이를 

가지는 프레임들로 변환된다. 프레임 하나의 길이는 실수부와 

허수부로 나누어져 총 2𝐿이며, 개별프레임을 독립적인 토큰으로 

변환하여 임베딩하고 앞에 클래스 토큰을 추가한다. 포지션 

임베딩으로 학습 가능한 포지션 바이어스를 추가하여 전역적인 

특징을 추출할 수 있도록 한다.  

트랜스포머 인코더 블록에서는 기존의 멀티 헤드 셀프 

어텐션의 구조와 달리 입력 시퀀스는 하나지만 출력 시퀀스는 

두개가 된다. 입력 토큰 시퀀스의 Q, K, V 와 인접한 요소들 간의 

차분 Q, K, V 가 동시에 연산 되어 동일한 가중치를 공유하며 

어텐션 스코어를 계산한다. 차분 어텐션 스코어는 입력 

시퀀스의 차분 시퀀스와 잔차 연결된다. 

차분을 거친 어텐션 스코어는 학습 가능한 파라미터인 𝛾가 

가중치로써 곱해져서 기존 어텐션 스코어와 합쳐진 이후 이중 

분기 게이트 선형 유닛을 통해 학습된다. 

각 트랜스포머 인코더 블록은 𝑀번 반복되고 마지막으로 출력 

토큰 시퀀스의 클래스 토큰을 이용하여 분류기를 통해 변조 

방식을 분류하게 된다. 



 

 
그림 1. 인접 프레임 간 차분의 차등적 어텐션을 이용한 

트랜스포머 구조 

 

Ⅲ. 시뮬레이션 결과 및 성능 분석 

 시뮬레이션은 오픈 소스 데이터셋인 RadioML 2018.01a 를 

사용하였으며, learning rate 는 validation loss 가 연속된 3 

epoch 동안 감소하지 않는 경우에 0.5 를 곱하여 감소하도록 

하였다. 구체적인 시뮬레이션 파라미터들은 표 1 에 나타내었다. 

시뮬레이션시 모든 모델에 대하여 프레임 길이 𝐿과 슬라이드 

스텝 길이 𝑅은 각각 32 와 16 으로 설정하였으며, 트랜스포머 

인코더 레이어 개수 𝑀은 모델 파라미터 개수를 일정 수준으로 

유지하기 위하여 4 로 설정하였다.[4] 모든 실험은 NVIDIA 

Tesla A100 GPU 와 TensorFlow 를 이용하였다. 

그림 2 와 표 2 는 기존의 다른 연구에서 이루어진 방식과 

성능을 비교하여 나타낸 것이다. 인접 프레임 간 차분의 차등적 

어텐션을 이용한 트랜스포머 기반 자동 변조 분류 모델이 최대 

정확도는 24dB 에서 99.14%, 평균 정확도(0dB<SNR<30dB)는 

93.3%, 평균 정확도(모든 SNR)는 64.14%로 가장 좋은 성능을 

가진다는 것을 확인할 수 있었다. 이는 프레임 간 차분 기반의 

어텐션에 곱해지는 가중치 𝛾의 값을 Gradient-descent방식으로 

학습시켰을 때, 차분 어텐션의 요소가 원본 어텐션의 요소와 

적절한 비율로 융합하여 학습될 때 프레임 간 신호 변화량을 

명확하게 강조하여 변조 방식별 특성 변화가 잘 드러날 수 

있음을 의미한다. 

 

표 1. 시뮬레이션 파라미터 

Parameters Values 

변조 방식 개수 24 

SNR 범위 -20dB:2dB:30dB 

샘플 길이  1024 

훈련, 검증, 테스트 비율 6:2:2 

Loss function Cross-entropy 

Optimizer Adam 

Batch size 500 

Epoch 50 

Initial learning rate 0.001 

 

 

그림 2. 변조 분류 정확도 그래프 

표 2. 타 모델과의 성능 비교 

모델 파라미터 

개수 

(개) 

최대 

정확도 

(%) 

평균 정확도 

(0dB~30dB) 

(%) 

평균 

정확도 

(모든 SNR) 

(%) 

FEA-T [4] 182040 98.52 92.78 63.7 

Ours 182552 99.14 93.3 64.14 

 

Ⅳ. 결론  

본 논문에서는 신호의 변조 방식을 자동으로 분류하기 위해 

인접 프레임 간 차분의 차등적 어텐션을 이용한 트랜스포머 

기반 자동 변조 분류 모델을 제안하고 타 모델과의 성능을 

비교하고 분석하였다. 이를 통해 제안한 모델이 파라미터 

개수를 유지하면서 차분 기반의 차등적 어텐션을 이용하여 더 

효과적으로 변조 방식을 분류할 수 있음을 확인하였다. 

추후에는 낮은 SNR 에서의 분류 성능을 높일 수 있도록 

노이즈의 영향을 제거할 수 있는 모델에 대한 연구와 제안한 

방법의 추론 속도를 높일 수 있도록 GPU 상에서 복소수 행렬 

곱의 병렬연산에 대한 연구가 필요할 것이다. 
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