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Attention of Differences between Adjacent Frames
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Parameters Values
w2 S 24
SNR 9] -20dB:2dB:30dB
AME 2ol 1024
Td, A%, H=E 9 & 6:2:2

Loss function

Cross—entropy

Optimizer Adam
Batch size 500
Epoch 50

Initial learning rate 0.001

Accuracy vs SNR
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Ours 182552 | 99.14 933 64.14
V. 28
B oegode A5 Wz A8 Asen RAal 96
A melel 7 ARl A5A oug olgd Edsky
ME BR mue A9 s

Eddoz wx AL BRI 4+ ULS LAY
FFl we SNR oMe BH AwE Y 4 dws
wolzel AFE AAT F Y 2ol g A7 Aa
Wel 22 4ES U 4+ AR GPU oldl 2as 3
Hol M B a7} Ae s Aol
ACKNOWLEDGMENT

B ETe AT Ader s3d AT A7

FaEd
[1] N. E. West and T. O’Shea, “Deep architectures for modulation
recognition,” in Proc. [EEE Int. Symp. Dyn. Spectr. Access Netw.
(DySPAN), 2017, pp. 1-6.
[2] S. Hamidi-Rad and S. Jain, “MCformer: A transformer based
deep neural network for automatic modulation classification,” in

Proc. [EEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp.
1-6

[3] S. Rajendran et al., “Deep learning models for wireless signal
classification with distributed low-cost spectrum sensors,” /EEE
Trans. Cognit. Commun. Netw., vol. 4, no. 3, pp. 433-445, May
2018.

[4] Y. Chen, B. Dong, C.Liu, W.Xiong, and S.Li, “Abandon locality:
Frame-wise embedding aided transformer for automatic
modulation recognition,” /EEE Commun. Lett., vol. 27, no. 1, pp.

327-331, Jan. 2023.



