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요 약  

 
본 논문은 수중 플랫폼 간 통신에서 수신된 음향 신호의 복원 성능을 향상시키기 위해 GRU 와 LSTM 모델을 비교 

분석하였다. 다양한 해양 노이즈 환경에서 실험한 결과로 GRU 모델은 대부분의 조건에서 더 낮은 복원 오차를 보였고 

LSTM 모델은 생물 소음 조건에서 강점을 나타냈다. 이를 통해 노이즈 유형에 따라 모델 선택의 중요성을 확인하였고 

향후에는 실측 데이터를 기반으로 하이브리드 모델을 적용하여 복원 성능을 개선할 계획이다. 

 

1. 서 론  

해군이 운용하는 수중통신기는 구축함과 구축함, 

구축함과 잠수함, 잠수함과 잠수함 간의 통신을 수행한다. 

이러한 통신은 음성을 포함한 아날로그 CW(Continuous 

Wave) 신호에 기반하여 수중 플랫폼 간 실시간으로 

데이터를 전달한다. 그림 1 은 수중 플랫폼 간 통신 

구조를 보여준다. 

 
그림 1. 수중 플랫폼(ⓐ: 구축함-구축함,  

ⓑ: 구축함-잠수함, ⓒ: 잠수함-잠수함 간 통신) 

 

그러나 수중통신기는 해양환경에서 발생하는 다양한 

형태의 노이즈와 간섭에 취약하다. 예를 들면, 수면 반사, 

해저 반향, 다중경로, 해양생물의 음파 간섭, 선체 진동 

등의 요인으로 인해 전송 신호가 감쇄되거나 왜곡되어 

전달될 수 있다. 따라서 최근에는 시간 의존성을 처리할 

수 있는 순환신경망(Recurrent Neural Network, 

RNN)[1] 계열 딥러닝 모델들이 새로운 대안으로 

나타나고 있다. 

본 논문에서는 구축함과 잠수함 간의 수중통신기 사용 

환경을 가정하여 다양한 해양 노이즈 조건 하에서 

GRU(Gated Recurrent Unit)[2] 모델과 LSTM(Long 

Short-Term Memory)[3] 모델을 활용한 수신 신호 

복원 성능을 비교 분석한다. 이를 통해 노이즈 유형별 AI 

대응 전략을 기술한다.  

2. 본론  

2.1 AI 수중 통신 시스템의 시나리오 

수중통신기의 구성은 변조기를 통해 음성신호를 

아날로그 신호로 변환하여 수중 음파 형태로 전송된다. 

전송된 음파는 해양 환경 내 다양한 매질을 거치며 수신 

측의 수신기를 통해 수신되고 복조기를 통해 원 신호로 

복원이 된다. 복조기에서 복원하는 과정에 AI 모델을 

결합하여 복원 성능을 향상시키고자 한다. 그림 2 에서 

AI 수중통신 시스템 시나리오를 확인할 수 있다.  

 
그림 2. 수중 통신 시스템 시나리오 

 

 2.2 노이즈 조건 설정 및 시험 환경 

 해양 환경에서는 다음과 같은 유형의 노이즈가 

존재한다: 

· Fixed Noise 0.3: 정해진 강도의 일정한 백색 

가우시안 노이즈 

· AWGN(Additive White Gaussian Noise): 평균이 

0 인 정규분포 노이즈, SNR 20dB 기준 

· Rayleigh Noise: 산란에 의해 발생하는 해양 채널 

특성 기반 노이즈 

· Impulse Noise: 짧은 시간에 강하게 발생하는 

간헐적 충격 노이즈 



 

· Bio Noise: 해양생물 및 배경 잡음 기반 노이즈 

 

원 신호와 노이즈 신호는 아래 그림 3 에서 확인한다.  

 

그림 3. 노이즈 유형별 시각화(신호 vs 노이즈) 

본 연구는 인공지능 모델로 순환신경망(RNN) 계열 중 

대표적인 GRU 모델과 LSTM 모델를 사용하였다. 입력 

신호는 1 초 길이의 1 차원 시계열 신호로 구성하였고 

1000 Hz 의 샘플링 주파수를 기준으로 총 1000 개의 

데이터를 사용하였다. 

모델 학습에는 Adam 옵티마이저를 적용하였고 손실 

함수는 평균제곱오차(Mean Squared Error, MSE)를 

사용하였다. 각 모델의 RNN 레이어는 64 개의 유닛으로 

구성하였고 학습률은 0.005 로 설정하였다. 학습은 최대 

100 epoch 까지 진행하였고 과적합 방지를 위해 학습을 

조기 종료하는 EarlyStopping 기법을 적용하였다.  

 

 2.3 딥러닝 모델 성능 비교 실험 

각 노이즈 환경에서 GRU 와 LSTM 모델을 각각 10 회 

반복 학습하여 평균 MSE 및 표준편차를 도출하였다. 

표 1. GRU 와 LSTM 모델 MSE 성능 

Noise Type GRU  LSTM 우세모델 

Fixed_0.3 0.006990 0.008345 GRU 

Awgn_20dB 0.000620 0.000739 GRU 

Rayleigh 0.003805 0.060404 GRU 

Impulse 0.002483 0.003569 GRU 

Bio 0.003650 0.003393 LSTM 

 

 

그림 4. GRU 와 LSTM 모델 MSE 비교 

 

그림 5. GRU 와 LSTM 모델 에러 분포도 비교 

2.4 노이즈 조건별 모델 비교 분석 

5 가지 노이즈 유형 중 4 개 조건에서 GRU 모델이 더 

낮은 MSE 값을 보이며 우수한 성능을 보였다. 특히 

Rayleigh 환경에서 GRU 모델이 LSTM 모델에 비해 

현저히 낮은 오차를 기록하였다. 이는 GRU 모델이 

반복적이고 짧은 기억을 효과적으로 처리하는데 강점을 

가지고 있어 복잡한 반사와 산란에 강점이다. 반면 Bio 

환경에서는 LSTM 모델이 MSE 가 더 낮았고 장기적인 

시퀀스 정보 처리에 LSTM 모델이 이점이 반영되었다.  

에러 분포도에서도 GRU 모델은 중심에 밀집된 오차를 

보였고 LSTM 모델은 일부 조건에서 분산이 크게 

나타나는 특성을 보였다. 이러한 결과는 모델의 구조적 

차이에 따라 수중통신기의 복원 성능에 영향을 줄 수 

있음을 보여준다. 그림 4, 5 에서는 평균 MSE 값과 에러 

분포도를 확인할 수 있다. 

 

3. 결론  

본 논문에서는 수중통신기의 음향을 복원하기 위해 

GRU 와 LSTM 모델 비교 분석을 하였다. 수중 음향 

통신에 대표적으로 존재하는 반사, 다중경로, 간섭 등의 

특성을 고려하여 실험을 구성하였고 GRU 모델은 

대부분의 환경에서 낮은 MSE 를 보여주며 상대적으로 

높은 복원 정확도를 입증했다. 반면 Bio 환경에서는 

LSTM 모델이 더 뛰어난 성능을 보이며 장기 의존성 

처리에 강점을 나타냈다. 결과적으로 각 모델의 장점을 

식별할 수 있었고 향후 연구에서는 실측 수중 음향 

데이터를 기반으로 실험 및 하이브리드 모델을 구현할 

예정이다. 본 연구는 향후 수중통신기 시스템에서 

AI 기반 음향 복원 알고리즘을 설계하는데 있어 

기초자료로 활용할 수 있을 것으로 기대된다. 
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