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요 약

본 논문은 지연된 부분 채널 상태 정보를 이용하는 하향링크 이기종 네트워크에서 협력적 다중 포인트 전송을 지원하는 기지국들로부터 사용자들이
달성할수 있는 총데이터율을 최대화하는 딥러닝기법을제안한다. 여기서, 제안하는 기법의학습 단계에서 딥러닝 기반의동적 셀 선택의 학습 결과는
송신 전력 할당 학습의 입력으로 이용되어연합적으로학습한다. 또한, 제안하는기법은실제지연되는 채널 상태 정보를 이용함과 동시에 피드백오버
헤드를 줄이고 위하여 부분 채널 상태 정보를 이용한다. 시뮬레이션 결과에서 제안하는 기법과 완전 탐색 기법의 데이터율 성능을 비교한다.

Ⅰ. 서 론

최근 딥러닝 기반 무선 통신 자원 할당 기법의 연구가 다양하게 연구되

고있다. 딥러닝기반자원할당은반복적수렴최적화방식에서발생하는

복잡도와 계산 시간을 심층신경망(Deep Neural Network, DNN) 기반 학

습 방식으로 해결한다. 이러한 딥러닝 기반 자원 할당은 이기종 네트워크

(Heterogeneous Network, HetNet)의 협력적 다중 포인트(Coordinated

Multi-Point, CoMP) 전송에서적용될수있다[1]. 한편, 실제 무선통신에

서의 제한된 대역폭에서 피드백 오버헤드를 줄이기 위한 부분 채널 상태

정보(Channel State Information, CSI) 피드백과 함께 피드백 지연 시간

도고려될수있다[2]. 본 논문에서는 HetNet에서의 CoMP 전송에서부분

CSI 보고와피드백지연시간을고려한딥러닝기반동적셀선택및전력

할당 기법을 제안하고 시뮬레이션을 통해 제안하는 기법과 완전 탐색 기

법의데이터율성능을 비교한다. 또한, 부분 CSI 보고와지연시간에따른

제안하는 기법의 데이터율 성능 변화를 분석한다.

Ⅱ. 시스템 모델

본 논문에서는 매크로 기지국(Base Satation, BS)의 통신 반경 안에

개의 소형 BS들이 배치되고 사용자 명이 무작위로 위치한

HetNet 시스템을 고려한다. 번째 BS와 번째 사용자 간 채널 이득은

  

로 표현된다. 여기서, 첫 번째 BS는 매크로 BS이고,

∼ 은 Rayleigh fading이고, 는 BS와 사용자간거리이
고, 는 경로 손실 지수이다. 경로 손실 기반 신호 대 간섭 및 잡음비가

최대인 BS 는 다음과 같다.

 
∈max 


∑∈＼   

∈
max . (1)

이때 
와 는 기지국의 송신 전력 최댓값과 경로 손실 기반 신호

대 간섭 및 잡음비이다. 는 백색 가우시안 잡음이고 는 전체 대역폭

이다. ≥ log


 를 만족하는 BS만 사용자 의 CoMP

BS로 설정하고, 이것은 
 을 의미하며여기서 는 주어진 임계

값이다. 반대로 이 조건을 만족 못하는 BS는 사용자 의 CoMP BS에서

배제되고, 이것은 
 을 의미한다. 실제 환경의 CSI 피드백 지연

을고려해 는 지연된 채널 이득이고 현재의 채널 이득은 다음과 같다.

   
 

 . (2)

여기서, 은 와 의 지연 관계 계수이자 0차 Bessel 함수인

이고, 는 최대 도플러 주파수이고, 는 피드백 지연 시간이

다. 그리고 ∼ 는 와 독립인 가우시안 분포를 따른다.
≤ ≤ 이고 이 증가할수록 피드백 지연 시간이 늘어남을 의미한다.

사용자는임계값 를 이용하여다음의조건을 충족하면 CSI를 보고한다.

≤ log    . (3)

따라서 와 에 대한 현재의 데이터율은 다음과 같다.
 ∈ 

∙ × log∈＼ . (4)
여기서, 는사용자할당 계수로 가동적셀 선택후 에게접속될경
우  이고, 그렇지 않을 경우  이다. 여기서 ∈ 
에 의해 사용자 한 명에 대해 단일 BS가 할당된다. 는 와 사이의

전력 할당 계수이다.

그림 1. 제안된 딥러닝 동적 셀 선택 기법과 송신 전력 할당 기법



Ⅲ-1. 딥러닝 동적 셀 선택 기법

본 논문에서는 딥러닝을 기반으로 각각의 사용자에 대하여 CoMP BS들

중 최적의 데이터율을 보이는 BS를 선정한다. 사용되는 신경망은 그림 1

의 점선 블록 내 512 노드를 가지는 은닉층 2개와 층마다 배치 정규화와

rectified linear unit(ReLU)을 활성화 함수로 배치한 DNN이다. DNN의

입력은 다음의 L2 정규화 과정을 거친 지연된 부분 CSI 채널 이득이다.

 ∈∈log 
log 

. (5)

여기서, 
 는 보고된 부분 CSI 채널 이득이다. DNN의출력은 ×행

렬로 변환되고 이는 다음과 같이 조정된다.


 ∞ if 

 
 


 if 

 
≠

(6)

이때 
는 DNN의 출력이고 

는 softmax 함수의 입력이 된다.

 
∈  ∀∈ . (7)

softmax로 얻어진 는 ∈ 를 만족하고, CoMP 송신하지않
거나 부분 CSI 보고가 되지 않으면  이 된다. 얻어진 로 훈련
하는 손실 함수  는 데이터율을 최대화하도록 다음과 같이 정리된다.

 ∈∈∈tanh



∈ 
 . (8)여기서 는 서비스 품질 ∈ ≥의 최소 데이터율이고,

는 데이터율 최대화와 서비스 품질의 중요도를 결정하는 계수이고,

 함수는 의 데이터율이 를넘지않는다면 
의값을증가

시킨다. 그림 1과 같이  의 에서의채널이득은현재데이터율을

구하기 위해 현재의 전체 CSI의 채널 이득 을 사용한다. 훈련 복잡도

를낮추기 위해 는각 의송신 전력최댓값 
의 배로 고정된

다. Adam 알고리즘으로 DNN의 weight와 bias 훈련후 에대한 의가
장 큰 가 1이 되고, 나머지 는 0이 된다. 이진화된 은 그림 1처럼
전력 할당 학습의입력이 된다. 또한 훈련에서는 모든 와 가 CoMP 전
송한다고 가정하여(즉,  ∞) 식 (5), (6)의 모든 

가 1로 고정된

다. 동적 셀 선택 훈련 신경망은 입력 
 의 임계값 와 지연 관계계수

에 따라 구별되어 훈련된다.

Ⅲ-2. 딥러닝 송신 전력 할당 기법

동적 셀선택훈련 이후 Ⅲ-1에서제시한 DNN과 구조는 같으나 독립적

인두 DNN에 

이 각각입력된다. 두 DNN의 출력인 

와 
은

동적 셀 선택 훈련에서  인 경우 


 


가

되고,  인경우 
∞

∞가된다. 
과 



은 softmax와 sigmoid 함수의입력이며동적셀선택으로사용자가 BS에

접속하면 각 은 가 되고, 그렇지 않으면 각 원소 당 softmax와

sigmoid의 함숫값은 0이 된다.


 

 


∈ 
 


 ∀∈ . (9)


  

 

 ∀∈∀∈. (10)

여기서 
와 

는 각 원소의 softmax와 sigmoid 함숫값이고 이를 통

해전력할당계수를송신전력최댓값 
과함께다음과같이유도한다.

 max



 min . (11)

여기서 min은최소송신전력이고동적셀선택이되지않은경우 는

0이 된다. 또한 ∈  ≤를 식 (9)-(11)를 통해 만족한다. 동적
셀선택 기법으로 얻은고정된 를이용해 손실함수  를식 (8)과 같
이 정리한다. 데이터율을최대화하는 를 Adam 알고리즘으로 DNN의

weight와 bias의훈련을통해구해진다. 송신 전력할당훈련 신경망역시

입력 
 의임계값 와지연관계 계수 에따라구별되어훈련된다. 그

림 1의 훈련이 끝나면 테스트 샘플로 모델을 평가한다.

그림 2. 임계값  과 지연 관계 계수 에 따른 데이터율 결과

Ⅳ. 시뮬레이션 결과 및 결론

본 실험은 임계값   그리고 지연 관계 계수 에 따라 변하는 CoMP

BS와 부분 CSI 피드백 비율의 변화와 데이터율의 상관관계를 확인하고

그 성능을 평가한다. 실험에선 반경 500m 내에 매크로 BS 1개, 소형 BS

3개의 위치를 고정했다. 사용자 수는 10이고, 테스트 샘플은 10,000개, 

는 3.0이다. 잡음 전력은  dBm/Hz, 주파수 대역폭은 5 MHz, 최소

데이터율은 1 Mbps, 매크로 BS 최대전력은 30 dBm, 소형 BS 최대전력

은 27 dBm 그리고최소송신전력은 0 dBm이다. 그림 2의모든기법에서

피드백 지연 시간이 다르다면 이 증가할수록 같은 을 가지는 신경망

의 데이터율 성능 편차가 증가한다. Prop. DNN-PA는 제안된 기법으로

와 에 따른 데이터율을 보여준다.  ∞일 때, Prop. DNN-PA

  은 식 (1)의 경로 손실 기반 신호 대 간섭 및 잡음비가 

의 5% 이상의 크기를 갖는 채널이 보고되고, 63%의 전체 CSI에 대한 부

분 CSI 피드백률을가진다. 피드백률이낮을수록데이터율의최대치가낮

고  ∞일 때 데이터율과 유사한 데이터율을 제공하는 값이 상대적

으로낮다. Exhaustive search는 완전탐색 기법을의미하고, 가 높아질

수록 제안된 기법은 완전 탐색 기법과 유사한 데이터율 성능을 보인다.
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