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[Central Cloud Server]

- Global Model Management
- Model Aggregation

- Secure Control

I Secure Network
[Edge Node - client]
- Data gathering
- Data preprocessing

[Edge Node - client]
- Data gathering
- Data preprocessing

[Edge Node - client]
- Data gathering
- Data preprocessing

[Local Learning Module]

- Model learning using local data (sensors, MES, SCADA, ERP ..)
- Light weight model / Explainable model

- Differential privacy
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