
 

광대역 초거대 안테나 다중 입출력 시스템을 위한 변환 부호화 기반 채널 상태 

정보 압축 기술 
 

박범수  이남윤 

포항공과대학교 

bumsupark@postech.ac.kr nylee@postech.ac.kr 

 

Transform Coding-based CSI Compression for Massive MIMO-OFDM System 

Bumsu Park and Namyoon Lee 

POSTECH 

요 약  

 
광대역 초거대 안테나 다중 입출력 시스템(wideband massive MIMO)은 높은 주파수 효율을 달성하기 위한 핵심 

기술이지만, 채널 상태 정보(CSI) 피드백 오버헤드가 지나치게 크다는 문제가 있어 CSI 압축이 필수적이다. 이러한 

배경에서, 본 논문은 변환 부호화(transform coding) 기반 CSI 압축 프레임워크를 제시한다. 제안하는 기법은 상관 관계가 

있는 CSI 를 선형 변환을 통해 독립 스칼라로 분리하고, reverse waterfilling 알고리즘을 통해 최적의 비트율을 분배한 후 

스칼라 양자화를 적용해 비트열로 압축한다. 실험 결과, 제안하는 기법은 이론적 한계에 준하는 성능을 달성했고 최신 

딥러닝 기반 CSI 압축 기법인 NTC보다 1647.9배 낮은 복잡도와 2048개의 파라미터 만으로 더 우수한 성능을 달성했다. 

 

Ⅰ. 서론  

6G 시대를 맞아 디지털 트윈, 증강 현실 등 혁신적인 

응용 서비스가 요구되며, 이를 위해 무선 시스템의 

스펙트럼 효율성 향상이 필수적이다. Massive MIMO 는 

기지국에 대규모 안테나 배열을 사용하여 스펙트럼 

효율을 크게 높이는 핵심 기술이다. 그러나 기지국에서 

정확한 하향링크 채널 상태 정보(CSI)를 알아야 하며[1], 

주파수 분할 다중 방식(FDD) 시스템에서는 단말기가 

하향링크 채널을 추정하여 기지국으로 명시적으로 

피드백해야 한다. 광대역 주파수 분할 다중화(OFDM) 

시스템에서 CSI 는 공간 및 주파수 차원에 걸쳐 매우 

고차원이므로 피드백 오버헤드를 줄이면서 채널 

정확도를 유지하는 효율적인 CSI 압축 기술이 중요하다. 

기존의 코드북 기반 방식이나 압축 센싱(CS) 기법은 

각각 양자화 오류 및 확장성, 채널 희소성 가정 등의 

한계를 가진다. 최근 딥러닝 기반 방식은 좋은 압축 

성능을 보였으나, 단말기에서의 계산 복잡도가 높고 많은 

파라미터를 요구하며 이론적 분석이 어렵다는 단점이 

있다. 본 논문에서는 광대역 CSI 압축을 위한 변환 

부호화 기반 프레임워크를 제안한다. 제안 방식은 채널 

공분산의 고유 구조를 활용하여 채널을 효과적으로 

압축하며, 이론적 분석이 가능하고 계산 효율적이면서도 

딥러닝 모델 학습 없이 우수한 성능을 달성한다. 

 

Ⅱ. 본론  

본 논문에서는 단일 셀 FDD 하향링크 시스템을 

고려하며, 기지국은 𝑁𝑡 개의 안테나를 갖고 단일 안테나 

단말기와 통신한다. 𝑁𝑐개의 부반송파를 사용하는 OFDM 

파형을 가정하면 전체 채널은 𝐇 ∈ ℂ𝑁𝑐×𝑁𝑡  로 표현되며, 

이를 벡터화한 채널을  𝒉̅ ∈ ℂ𝑁𝑖𝑁𝑐  로 정의한다. 𝒉̅는 

 
그림 1. 제안하는 변환 부호화 기반 CSI 압축 구조. 

 

평균이 0 인 복소 가우시안 벡터  𝒉̅ ∼ 𝒞𝒩(0, 𝐑) 로 

모델링하며 𝐑은 채널의 결합 공분산 행렬이다. 

다음으로 CSI 압축 문제를 소개한다. 본 논문에서는 

단말기가 채널 벡터를 오차 없이 추정했다고 가정한다. 

단말기는 획득한 채널 벡터 𝒉̅를 총 𝑅  비트(복소 차원 

당)로 제한된 비트스트림 𝐬로 압축해야 한다 

𝑓: ℂ𝑁𝑡𝑁𝑐 → {0,1}𝑅𝑁𝑡𝑁𝑐: 𝒉̅ ↦ 𝐬.           (1) 

기지국은 수신한 비트스트림 𝐬 를 이용하여 채널 

추정치 𝒉̂̅를 복원한다 

𝑔: {0,1}𝑅𝑁𝑡𝑁𝑐 → ℂ𝑁𝑡𝑁𝑐: 𝐬 ↦ 𝒉̅.           (2) 

CSI 압축의 목표는 주어진 비트율 𝑅 하에서 원본 채널과 

복원된 채널 간의 평균 제곱 오차(MSE)  

𝐷 = 𝔼[|𝐡̅ − 𝐡̂̅|2
2],                 (3) 

를 최소화하는 것이다. 

제안하는 변환 부호화 기반 CSI 압축 방식의 구조는 

그림 1 과 같다. 핵심 아이디어는 먼저 단말기에서 채널 

공분산 행렬 𝑹을 추정한 후, 고유값 분해, 𝐑 = 𝐔𝑒𝚲𝐔𝑒
H 

를 통해 얻은 Karhunnen-Loève 변환(KLT) 행렬 𝐔e를 

이용하여 채널 벡터 𝒉̅ 을 독립적인 스칼라 계수 {𝒉̅𝑚} 

들로 변환하는 것이다. 이때 전체 𝐇의 주파수 축과 공간 

축이 통계적으로 독립이라면,  

   

       

   

  

     

  

    
   

       

        

        

       
             

       

        

       

        



 
그림 2. 상관 가우시안 채널 압축 성능. 

 

변환 행렬 𝐔e 을 𝐑𝑓 의 고유행렬, 𝑼𝑓 와 𝐑𝒕 의 고유행렬, 

𝑼𝑡 의 크로네커 곱, 𝐔e = 𝐔𝑡 ⊗ 𝐔𝑓 으로 분리할 수 있다. 

이때 변환 행렬을 간단하게 계산할 수 있고, 적은 수의 

파라미터로 압축할 수 있기 때문에 메모리 효율적이며 

계산 복잡도도 줄어든다. 변환 과정을 통해 분리된 각 

스칼라 계수 {𝒉̅𝑚}  에 reverse-water-filling 을 통해 

최적의 비트율을 할당해주고, 엔트로피 부호화 제약 

스칼라 양자화(ECSQ), 그리고 엔트로피 부호화 과정을 

통해 개별적으로 압축한다. 

본 논문에서는 제안하는 기법을 4 가지 baseline 인  

R-D 커브, NTC[2], NTC-multi-level[2], OVSQ[3]와 

비교해 제안하는 기법의 압축 성능을 검증한다. R-D 

커브는 압축 성능의 이론적 한계이고, NTC, NTC-multi-

level, OVSQ 는 딥 러닝 기반 CSI 압축 기법이다. 

제안하는 기법은 𝒉̅의 전체 공분산을 추정해 기저 행렬 

𝑼𝑒 를 계산하는 방식과, 기저 행렬 𝑼𝑒 이 분리 가능한 

구조를 따른다고 가정하고 기저 행렬  𝑼𝑒  을 더욱 

간단하게 계산하는 두 가지 방식을 비교한다. 

그림 1 은 상관 가우시안 채널에 대한 압축 성능을 

보여준다. 제안하는 방법의 성능은 R-D 커브에 근접하며 

모든 영역에서 제안하는 기법이 딥 러닝 기반 방법들 

보다 좋은 압축 성능을 보인다. 표 1 에 따르면, 제안 

기법 중 𝑼𝑒  전체를 추정하는 방식은 NTC 보다 100 배, 

적은 계산 복잡도를 가지며, 분리 구조 기반 방식은 

1647 배 적은 계산 복잡도를 갖으며 오직 2048 개의 

파라미터 만을 사용하는 극도의 효율성을 보여준다. 이 

결과를 통해 채널의 통계적 특성이 가우시안을 잘 

따른다면 매우 효율적으로 한계에 가까운 압축 성능을 

달성할 수 있음을 시사한다. 

다음으로, 그림 2 는 modified COST2100 채널 에서의 

압축 성능을 보여준다. Modified COST2100 채널은 

COST2100 [4]채널에서 다중 클러스터 대신 단말기와 

가장 가까운 클러스터만으로 생성한 채널이다. 그림 2 의 

검은 점선은 채널 데이터와 동일한 공분산을 갖는 

가우시안으로 근사했을 때의 R-D 한계로, 실제 한계의 

상한을 제공한다. 제안하는 방법 중 전체 𝑼𝑒을 추정하는 

방식은 이론적 한계의 상한에 매우 근접하는 우수한 

성능을 달성하였다. 우리가 제안한 기법 중 분리된 

구조의 𝐔𝑒 을 추정하는 방식은 채널 모델의 불일치로 

인해 전체 𝐔𝒆을 추정하는 방식 대비 상당한 성능 저하를 

보였다. 그럼에도 불구하고, 낮은 비트율 영역에서는 

NTC 와 경쟁력 있는 성능을 유지하였으며, 높은 비트율 

영역에서는 모든 딥러닝 기반 기법들보다 우수한 압축 

성능을 달성하였다. 다만, 전체 𝐔𝑒 을 추정하는 방식과의 

성능 차이 또한 크기 때문에, 가능하다면 전체 공분산  

 
그림 3. Modified COST2100 채널 압축 성능. 

 
구조를 정확히 모델링하는 것이 여전히 중요함을 알 

수 있다. 

표 1. 파라미터 수, 계산 복잡도 비교. 

 파라미터 수 계산 복잡도 

OVSQ 530,000 7.5 × 106 

NTC 470,000(점 별) 2.16 × 108 

NTC multi-level 470,000 2.16 × 108 

Proposed with full 𝐔𝑒 2 × dim(𝐑) 2.1 × 106 

Proposed with 

structured 𝐔𝑒 
𝟐, 𝟎𝟒𝟖 𝟏. 𝟑𝟏 × 𝟏𝟎𝟓 

Ⅲ. 결론  

본 논문에서는 변환 부호화 기반 CSI 압축 기법을 

제안한다. 제안하는 기법은 고전압축 기술에 기반해 

분석이 용이하며, 최소의 MSE 를 보장한다. Correlated 

Gaussian, modified COST2100 채널에서 실험한 결과, 

제안하는 기법은 최신 딥러닝 기반 기법들 대비 약 

1647 배 적은 계산 복잡도와 2048 개의 파라미터 만 

사용하는 극도의 효율성에도 더 뛰어난 압축성능을 

달성했다.  
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