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Hybrid NIDS: GraphSAGE + Transformer + Global Context + Gated Fusion

GraphSAGE
(3 layers + Residual + BatchNorm)

Gated Fusion
(Local + Global mix)

Transformer Encoder
([CLS] token + Multi-Head Attention)

Global Context
(AttentionalAggregation)

Classifier
(FC + RelU + Dropout + Softmax)
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