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Abstract—For battery-powered systems to be more dependable
and long-lasting, effective battery management is essential. This
study uses the NASA battery dataset to develop a machine
learning-based system for forecasting dangerous battery condi-
tions. In order to anticipate possible failures before they happen,
the system analyzes charge and discharge cycle data, paying
special attention to anomalies related to temperature. Battery
states are classified as safe or dangerous using a Random Forest
Classifier, and class imbalance is addressed using the Synthetic
Minority Over-sampling Technique (SMOTE). The suggested
system provides precise, real-time forecasts, enhancing battery
longevity and safety across a range of industrialapplications.

Index Terms—Battery Health, Class Imbalance, Danger-
ous Conditions Prediction, Machine Learning, NASA Battery
Dataset, Random Forest Classifier, SMOTE, Battery Manage-
ment System

I. INTRODUCTION

For battery-powered systems to be dependable and long-
lasting, battery management is essential. To avoid failures and
improve safety, it is essential to accurately predict dangerous
events, such as temperature anomalies. By detecting possible
hazards early on, machine learning techniques—especially
when used on large datasets like the NASA battery dataset [1],
[2]—can greatly enhance battery health monitoring.

Important variables like voltage, current, and temperature
are included in the NASA battery dataset and can be used
to inform predictive maintenance. Despite advancements in
battery health monitoring, there is still a lack of research
on using machine learning models to identify temperature-
related risks [3], [4]. With an emphasis on temperature-
related anomalies, this study suggests a machine learning-
based system to analyze charge and discharge cycle data and
forecast hazardous battery conditions [5], [6].

In this paper, a Random Forest Classifier-based predictive
system for identifying safe and dangerous battery states is
presented. By using SMOTE to address class imbalance, the
system offers precise predictions in real time. By enabling
early detection of hazardous events, the goal is to improve
battery safety by prolonging battery lifespan and preventing
failures [7], [8].

II. SYSTEM DESIGN

The proposed system predicts dangerous events in battery
charging and discharging cycles using the NASA battery
dataset. It involves data preprocessing, feature engineering,

and model training to build a predictive model for battery
health monitoring.

A. 1. Data Preprocessing

The battery data includes voltage, current, and temperature
readings. Key preprocessing steps include:

1) 1.1 Temperature Handling: Missing or non-numeric
temperature data Tmeasured is converted to numeric values and
filled with the mean temperature Tmean:

Tmean =
1

N

N∑
i=1

Ti (1)

2) 1.2 Temperature Rate Calculation: The rate of temper-
ature change dT

dt is calculated as:

dT

dt
= Ti+1 − Ti (2)

This feature helps detect rapid temperature changes indica-
tive of hazardous conditions.

3) 1.3 Danger Label Creation: A binary danger label is
assigned based on a 45°C threshold. If Ti > 45◦C, the label
is 1 (dangerous), otherwise 0 (safe):

dangeri =

{
1 if Ti > 45◦C

0 if Ti ≤ 45◦C
(3)

B. 2. Feature Engineering and Data Combination

The features for training include voltage, current, mean
temperature, and the temperature change rate:

X = {Vconverted, Iconverted, Tmean,
dT

dt
}

These features are extracted from both charge and discharge
events and combined into a single dataset.

C. 3. Model Training

A Random Forest Classifier is trained to predict dangerous
events. The model minimizes the binary cross-entropy loss:

L = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (4)

SMOTE is applied to handle class imbalance by generating
synthetic samples for the minority class.



Fig. 1. System flowchart

D. System Flowchart

The system flowchart can be summarized as:

• Load Data: Load metadata and charge/discharge data
files.

• Preprocess Data: Handle missing values, convert units,
and calculate temperature change.

• Feature Engineering: Extract features like voltage, cur-
rent, and temperature.

• Train Model: Train the Random Forest model with the
processed dataset.

• Predict Danger: Predict potential dangerous events with
the trained model.

III. PERFORMANCE EVALUATION

The performance of the proposed system is evaluated us-
ing the confusion matrix and temperature distribution. These
metrics offer insights into the model’s accuracy and potential
overfitting.

A. Confusion Matrix

The confusion matrix, shown in 1 indicates the following:
- True Positives (Dangerous events correctly predicted):

151,735 - True Negatives (Safe events correctly predicted):
2,033,149 - No False Positives or False Negatives

This suggests high accuracy, but the absence of false
positives and false negatives raises concerns about possible
overfitting, especially given the class imbalance, where safe
events far outnumber dangerous ones. The model might have
over-learned the safe class, potentially neglecting dangerous
events.

B. Temperature Distribution

The temperature distribution, shown in 2, reveals:
- Most temperatures are below 30°C, with few events

exceeding 40°C.
- This skewed distribution suggests that the model is mostly

trained on safe events, reinforcing the overfitting risk.

Fig. 2. System flowchart

IV. CONCLUSION

This paper presents a machine learning-based system for
predicting dangerous battery conditions using the NASA bat-
tery dataset. By applying a Random Forest Classifier and ad-
dressing class imbalance with SMOTE, the system accurately
classifies battery states as safe or dangerous. The proposed
system enhances battery health monitoring, providing real-
time, reliable predictions to improve safety and longevity.
Future work will focus on validating the model on new datasets
to ensure generalization and robustness.
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