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요 약  

 
본 논문에서는 무선 통신 시스템에서 널리 활용되는 BCH, LDPC 부호의 신경망 기반 복호기 성능의 향상 

기법인 감쇠 유무를 중심으로 성능을 비교 분석한다. BCH (63,36) 및 LDPC (576,288) 부호를 대상으로 

Neural Normalized Min-Sum(NNMS) 복호 기법을 기반으로, 반복 복호 횟수와 감쇠 적용 유무에 따른 비트 

오류율(BER) 성능을 정량적으로 평가하였다. 

 

Ⅰ. 서론  

무선 통신 시스템에서 오류 정정 부호는 신뢰성 있는 

데이터 전송을 위한 핵심 기술로, 초저지연·고신뢰 통신 

시스템을 구축하기 위해 사용된다. 이때 사용되는 부호의 

종류로는 BCH (Bose–Chaudhuri–Hocquenghen) 부호[2], 

LDPC (Low-Density Parity-Check) 부호[1] 등이 있다. 

 BCH 및 LDPC 부호는 선형 블록 부호로서 

신뢰전파(Belief Propagation, BP) 방식과 최소합(Min-Sum, 

MS) 방식으로 복호가 가능하다. 하지만 초저지연·고신뢰 

통신시스템 구축을 위해서는 더욱 낮은 오류율을 달성할 

필요성이 있다. 이에 따라 최근에는 신경망 기반 

복호기(Neural Decoder)가 활발히 연구되고 있다[3]. 해당 

기법은 신뢰전파나 최소합 알고리즘의 각 연산을 

신경망으로 표현하여 학습을 통해 복호 성능을 

향상시키고자 하는 접근법이다. 

 그러나 기존 최소합 알고리즘을 응용한 NNMS (Neural 

Normalized Min-Sum)[3][4]와 같은 기법은 여전히 학습 

안정성과 수렴 특성의 한계가 존재하며, 이를 개선하기 

위한 다양한 구조적 접근의 필요성이 있다. 

 본 연구에서는 그 중 하나인 감쇠(Damping)를 신경망 

기반 복호기에 도입하여, 반복 복호 과정에서 정보 

전달의 효율성과 학습 안정성을 향상시키고자 한다. BCH 

(63 ,36), LDPC (576, 288) 코드를 대상으로 NNMS 복호 

방법에 감쇠 적용 유무에 따른 따른 비트 오류율(BER) 

성능을 비교·분석함으로써, 신경망 기반 복호기의 구조적 

개선이 복호 성능에 미치는 영향을 정량적으로 

평가하고자 한다. 

Ⅱ. 본론  

2.1 BCH 부호 

BCH 부호는 대수적 구조를 바탕으로 한 선형 블록 부

호로, 고정된 부호 길이와 명확히 정의된 오류 정정 능력

을 바탕으로 예측 가능한 성능을 제공하여 제어 채널이

나 저장 장치 등에서 널리 사용된다. 일반적으로 이진 갈

루아 필드 GF(2𝑚   위에서 정의되며, 𝑛 =  2𝑚 − 1형태의 

코드 길이를 갖는다. 

 

2.2 LDPC 부호 

LDPC 부호는 희소한 패리티 검사 행렬을 기반으로 한 

선형 블록 부호로, 반복 복호를 통해 우수한 오류 정정 

성능을 달성한다. 낮은 밀도의 행렬 구조 덕분에 연산 복

잡도를 효율적으로 줄이면서도, Shannon 한계에 근접한 

성능을 보여 다양한 무선 통신 시스템과 데이터 전송 표

준에 폭넓게 적용되고 있다. 

 

2.3 메시지 전달 복호 알고리즘 

BCH 및 LDPC 코드에 적용될 수 있는 메시지 전달 복

호 알고리즘으로는 신뢰전파, 최소합, NNMS 알고리즘 등

이 있다. 이들은 Tanner 그래프 기반 메시지 전달 구조를 

공유하며, 변수 노드와 검사 노드 간 메시지를 반복적으

로 갱신하여 오류를 정정한다. 

신뢰전파 알고리즘은 베이즈 추론 기반의 확률적 복호 

방식으로 식은 다음과 같다. 

𝑚𝑐 = 2 tanh−1 ( Πi=1
n 𝑡𝑎𝑛ℎ (

𝑚𝑣,𝑖

2
)) (1  

이때 𝑚𝑐는 검사 노드에서 변수 노드로 전달되는 메시지, 

𝑚𝑣는 변수 노드에서 검사 노드로 전달되는 메시지, 𝑚𝑣,𝑖

는 해당 검사 노드로 들어는 한 개 edge 에 해당하는 메

시지이다. 

신뢰전파를 단순화한 최소합 알고리즘은 최소 절댓값 

기반의 근사화를 이용하며 식은 다음과 같다. 

𝑚𝑣 = min |𝑚𝑐| ∏i=1
n  𝑠𝑔𝑛(𝑚𝑣,𝑖) (2  

신경망 기반 복호기는 Trellis Diagram 기반으로 변수 노

드 연산을 홀수 항, 검사 노드 연산을 짝수 항으로 간주

하여 신경망 형태로 확장한 뒤 각 메시지 전달 단계에 

학습 가능한 가중치를 도입한 복호 성능 개선안을 통칭

한다 [3]. 그 종류 중 하나인 NNMS 알고리즘의 경우에는 

최소합 알고리즘에서 검사 노드를 계산할 때 신뢰전파 

알고리즘을 더 정확하게 근사하기 위해 가중치를 도입한 

NMS (Normalized Min-Sum 를 기반으로 한다. NNMS 는 이

러한 NMS 의 가중치를 학습 가능하도록 확장하여, 신경

망을 통해 최적화된 복호 성능을 달성하도록 설계되었다. 

NNMS 알고리즘의 식은 다음과 같다. 

𝑥𝑖,𝑒=(𝑣,𝑐) = wi,𝑣 min
(𝑒′=(𝑣,𝑐′),𝑣≠𝑣′)

|𝑥𝑖−1,𝑒′ | ∏ 𝑠𝑔𝑛(𝑥𝑖−1,𝑒′ )(𝑒′=(𝑣,𝑐′),𝑣≠𝑣′)     

(3  



 

그림 1. 감쇠 유무, 반복 횟수에 따른 BCH (63, 36  

부호의 BER 비교 

 

이때 식(3)은 홀수 항, 식(4)는 짝수 항으로 𝑙𝑣는 로그우

도비, e 는 edge, v 와 c 는 각각 변수노드, 검사노드를 뜻하

며 ′기호는 해당 항목을 제외한 나머지 항목, 그리고 w

가 가중치로 곱해지는 형식이다. 

𝑜𝑣 = 𝜎(𝑤2𝐿+1,𝑣𝑙𝑣 + ∑ 𝑤2𝐿+1,𝑣,𝑒′𝑥2𝐿,𝑒′𝑒′=(𝑣,𝑐′) )             (4  

식 (4 은 i 를 2L+1(L 은 코드길이 까지 진행했을 때 최종 

결과값(𝑜𝑣 이며, 이때 𝜎는 sigmoid 함수이다 
 
2.4 학습 가능한 감쇠 

신경망 기반 복호기의 학습 안정성과 효율을 향상시키

기 위한 방법으로 학습 가능한 감쇠 (Trainable Damping 가 

제안된 바 있다[5]. 이 기법은 반복 복호 과정에서 현재 

검사 노드에서 계산된 메시지와 이전 검사 노드의 메시

지를 학습 가능한 비율로 혼합함으로써 학습 성능 안정

화를 꾀한다. 식은 다음과 같다. 

𝑥𝑖,𝑒=(𝑣,𝑐)
𝑡 = (1 − 𝛼)𝑥𝑖,𝑒=(𝑣,𝑐)

𝑡 +  𝛼𝑥𝑖,𝑒=(𝑣,𝑐)
𝑡−1            (5  

이때 𝛼 는 감쇠 항, 𝑥𝑖,𝑒=(𝑣,𝑐)
𝑡 는 현재 검사 노드에서 

계산된 메시지, 𝑥𝑖,𝑒=(𝑣,𝑐)
𝑡−1 은 이전 검사 노드의 메시지이다. 

III. 복호 성능 분석 

본 절에서는 BCH (63, 36) 및 LDPC (576, 288) 부호에 

대해 감쇠 적용 여부와 최대 반복 복호 횟수에 따른 

비트 오류율 (BER) 성능을 비교하였다. 모든 신경망 기반 

복호기는 NNMS 방식을 기반으로 학습되었으며, 

가중치는 평균 1.0, 표준편차 0.1 의 정규분포로 

초기화하였다. 학습률은 0.003 으로 통일하여 실험 간 

비교의 일관성을 확보하였다. 최대 반복 횟수는 10 회와 

60 회로 설정하였다. 

 그림 1 은 BCH (63, 36) 부호의 감쇠 유무에 따른 복호 

결과를 비교한 것이다. 최대 반복 횟수 10 회일 때 두 

구조의 성능이 BER 10−4 에서 0.2dB 가량의 차이가 

있었으며, 최대 반복 횟수 60 회일 때는 BER 10−4에서 

0.3dB 가량의 차이가 있었다.  감쇠를 적용한 구조가 BER 

성능 개선에 효과적이며, 최대 반복 횟수가 증가할수록 

그 효과가 증가함을 알 수 있다. 

 그림 2 는 LDPC (576, 288) 부호의 감쇠 유무에 따른 

BER 성능을 비교한 것이다. 반복 횟수 10 회 구간에서는 

두 구조 간 차이가 미미하였으나, 반복 횟수를 60 회로 

증가시킬 경우 감쇠 적용시 BER 10−4에서 0.25dB 가량의 

성능 개선이 관찰되었다. 즉, 감쇠의 성능 개선 효과는 

다양한 부호에도 적용될 뿐만 아니라 효과의 정도가 

부호 종류에 따라 상이할 수 있음을 알 수 있다. 

  

그림 2. 감쇠 유무, 반복 횟수에 따른 LDPC  

(576, 288  부호의 BER 비교 

 

IV. 결론  

본 연구에서는 신경망 기반 반복 복호 구조를 BCH 

(63, 36) 및 LDPC (576, 288) 부호에 적용하여, 감쇠의 적용 

여부와 최대 반복 횟수에 따른 BER 성능을 비교 

분석하였다. 

그 결과, 반복 횟수가 적을 때는 두 구조 간의 성능 

차이는 BCH (63, 36) 부호의 경우에만 드러났지만, 반복 

횟수가 60 회로 증가할 경우 감쇠를 적용한 복호기가 

부호 종류와 무관하게 향상된 BER 성능을 보였다. 

이러한 결과는 감쇠의 적용이 반복 복호 과정에서 성능 

개선에 효과적이나, 그 효과가 부호의 구조적 복잡도나 

밀도에 따라 달라질 수 있음을 시사한다. 

다만, 해당 구조는 추가적인 메모리 자원을 요구하므로 

실용적인 구현을 위해서는 향상된 성능을 유지함과 

동시에 경량화를 달성할 수 있는 후속연구가 필요할 

것으로 보인다. 
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