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요   약 
 

본 논문은 딥러닝 기반 오류 정정 부호 복호기의 동향을 분석한다. 코드의 그래프 구조를 활

용하는 신경망 신뢰전파부터, 트랜스포머 모델을 적용한 ECCT 까지 주요 접근법을 검토한다. 

특히 ECCT 의 연산 복잡도와 메모리 한계를 개선하기 위한 최신 경량화 및 다중 모달리티 기

반 모델 프리 복호기 연구를 중심으로 기술한다. 

 

   1. 서론 
차세대 통신 시스템은 초고신뢰 저지연 통신을 

지원하기 위해 점점 더 복잡하고 강력한 오류 정정 

부호 기술을 요구한다. 이에 최근 딥러닝 기술을 오

류 정정 부호 기술에 접목하는 연구가 활발히 진행

되고 있다. 

초기에는 코드의 태너 그래프(Tanner graph) 구조

를 신경망으로 해석한 신경망 신뢰전파 방식(Neural 

Belief Propagation, Neural BP) [1]이 주목받았다. 이후 

기존 선형 블록 부호(Linear Block Code)의 구조에서 

벗어나 모델 프리 복호를 시도하는 연구들이 시행

되었고, 자연어 처리 분야에서 압도적인 성공을 거

둔 트랜스포머 모델[2]이 오류정정부호 분야에 적용

되어, ECCT(Error Correction Code Transformer) [3]와 같

이 기존의 성능을 뛰어넘는 모델들이 등장했다. 

하지만 ECCT 와 같은 모델 프리 복호기들은 우수

한 성능에도 불구하고, 높은 연산 복잡도(전형적 

self-attention 의 시간 복잡도는 𝑂(𝑛2𝑑) , 메모리 

𝑂(𝑛2) )를 갖는다[2]. 이러한 복잡도는 엄격한 지연 

시간(latency) 제약이 있는 환경이나 한정된 자원을 

가진 엣지 디바이스에 딥러닝 복호기를 실질적으로 

적용하는 데 큰 장벽으로 작용한다. 

따라서 본 논문은 ECCT 와 같은 모델 프리 복호

기의 실용화를 가로막는 복잡도 문제를 해결하기 

위해 최근 제안되고 있는 다양한 모델 프리 경량화 

아키텍처들을 중심으로 소개하고자 한다. 

 

   2. 본론 
2.1 모델 기반 복호 알고리즘 

모델 기반 딥러닝 복호 알고리즘은 코드의 

PCM(Parity Check Matrix)나 태너 그래프와 같이 이

미 알려진 구조적 정보를 신경망 설계에 직접 활용

한다. 기존의 신뢰전파 알고리즘에 신경망을 적용

해 개발된 신경망 신뢰전파 알고리즘에서는 기존의 

계산을 신경망의 계층으로 '펼치는(unfolding)' 구

조를 가진다. 즉, 태너 그래프의 변수 노드와 검사 

노드 간의 메시지 반복 전달 및 업데이트 과정을 

그대로 신경망의 순전파(feed-forward) 연산으로 

해석하고, 각 메시지 갱신 함수에 학습 가능한 가

중치(weight)를 도입하는 것이다. 신뢰전파 알고리

즘과 마찬가지로, 변수 노드와 검사 노드는 

LLR(Log-Likelihood Ratio) 형태의 메시지를 반복

적으로 주고받으며 오류 확률을 갱신한다. 학습과

정에서 가중치들이 채널 환경 및 오류 패턴에 최적

화되고,결과적으로 기존 신뢰전파 방식에 비해 약 

0.3~0.8 dB 의 성능 향상을 보였다([1],Fig.3, 

BCH(63,36),SNR = 2~4dB). 

 

2.2 모델 프리 복호 알고리즘 

2.2.1 트랜스포머 

트랜스포머는 본래 자연어 처리 분야에서 제안된 

모델로, 입력 시퀀스 내의 모든 요소 간 상호 관계

를 병렬적으로 계산하는 Self-Attention 메커니즘을 

기반으로 한다. 

트랜스포머는 입력 시퀀스로부터 Q(Query), 

K(Key), V(Value) 행렬을 생성한다. Self-attention 메커

니즘은 각 위치의 Q 벡터가 시퀀스 내 모든 위치의 

K 벡터와 얼마나 연관이 있는지를 계산해 Attention 

Score 로 나타내고, 이 값을 V 벡터에 대한 가중치

로 사용하여 문맥 정보를 종합한다. 이때 마스킹 행

렬 연산(0 또는 −∞ 값 적용)을 통해 인과성(causality)

을 보장하거나 특정 연결을 차단할 수 있으며, 이는 

정보 흐름 제어에 핵심적이다. 

2.2.2 ECCT 

ECCT 는 수신된 LLR 값으로 구성된 시퀀스를 입

력받아, Self-Attention 메커니즘을 통해 시퀀스 내 모

든 비트 위치 간의 상호 관계를 종합적으로 학습한



다. 단, 모든 코드워드를 직접 학습할 경우 코드워

드 수가 2𝑘 에 달하여 지수적 복잡도와 과적합

(overfitting) 문제가 발생한다.  

ECCT 는 이 문제를 해결하기 위해 신드롬( 𝑠 =

𝐻𝑟𝑇 ,H 는 PCM, r 은 수신벡터) 기반 접근 방식을 채

택하여, 복호기가 특정 코드워드에 불변(invariant, 

선형 블록 코드의 선형성에 위배되지 않음)하도록 

설계되었다. 즉, 𝑛 길이의 코드워드 시퀀스 대신, 

2𝑛 − 𝑘길이(n 길이의 수신된 LLR 벡터와 𝑛 − 𝑘길이

의 신드롬벡터 연결)의 시퀀스 벡터([n],[n-k])를 입

력으로 사용한다. 이 시퀀스는 임베딩 계층을 통해 

고차원 벡터 공간으로 사상되고, 학습된 가중치 행

렬을 곱해 Q,K,V 를 생성한다. 

 또한 PCM 으로부터 마스킹을 생성한 후에 

Attention 생성에 적용해, 태너 그래프의 기본연결

(비트-신드롬)과 동일 검사노드를 공유하는 비트들 

간 관계(비트-비트)까지만 정보로서 반영한다. 이로

써 ECCT 는 트랜스포머의 전역 표현력을 유지하면

서도 코드 구조의 일관성을 보장한다. 

 

2.3 모델 프리 알고리즘 신규 연구 동향 

2.3.1 Attention 경량화 및 양자화 기법 

ECCT 의 높은 연산 복잡도와 메모리 요구량을 결

하기 위해 제안된 모델인 AECCT (Accelerated 

ECCT)[4]는 ECCT 의 핵심 복잡도 병목인 Attention 

연산과 선형 레이어를 개선하기 위해 세 가지 주요 

기법을 통합한다. 

첫째, HPSA (Head Partitioning Self Attention) 는 기존 

ECCT 의 Attention 헤드를 1-링(V-C) 연결 전담 그룹

과 2-링(V-V, C-C) 연결 전담 그룹으로 명시적으로 

분할하여, Attention 마스크의 희소성(sparsity)을 극대

화하고 연산 복잡도를 약 40% 낮춘다([4], Table 1, 

BCH(63,45), GPU Inference Complexity, HPSA 적용 시 

FLOPs 39.6% 감소). 

둘째, AAP (Adaptive Absolute Percentile) 양자화 기

법을 통해 트랜스포머 내부의 선형 레이어 가중치

를 3 진(Ternary, {−1,0, +1}) 값으로 압축하여, 곱셈 

연산을 제거하고 메모리 사용량을 약 70% 절감([4], 

Fig. 6, BCH(63,45), AAP 양자화 적용 시 Model Size 

68.7% 감소)한다. 

 셋째, SPE (Spectral Positional Encoding) 를 도입하여 

태너 그래프의 라플라시안 고유공간 정보를 위치 

인코딩으로 활용함으로써, ECCT 의 이진(binary) 마

스킹에서 손실되었던 세분화된 그래프 구조 정보를 

모델에 제공한다. 

2.3.2 다중 모달리티 아키텍처 

Cross-MPT [5]는 수신된 LLR 시퀀스와 코드의 패

리티 검사 행렬을 서로 다른 모달리티(modality, 서

로 다른 정보 표현 형태를 의미하며, 예를 들어 이

미지·텍스트·그래프 등 데이터 유형의 차이를 표현) 

로 간주한다. 이 모델은 입력을 패치(patch) 단위로 

분할하고, Cross-Attention 메커니즘을 통해 이 두 모

달리티의 상관관계를 학습한다. LLR 정보만을 사용

하는 ECCT 와 달리, 코드의 구조적 정보를 함께 활

용해 복잡도를 낮추고  BER(Bit Error Rate)성능을 증

진한다. ([5] Fig. 4, BCH(63,36), SNR=2.5~3.5 dB, ECCT 

대비 BER 약 0.35 dB 향상, 복잡도 약 25% 감소) 

2.3.3 하이브리드 아키텍처 

신경망 반복복호 알고리즘의 낮은 복잡도와 트랜

스포머의 높은 성능(전역적 표현력)이라는 장점을 

결합하려는 시도이다. Diff-MPT (Differential-Attention 

Message Passing Transformer)[6]는 메시지 전달 네트

워크 내부에 경량 Attention 모듈을 삽입하여, 지역

적(local) 그래프 메시지와 전역(global) 시퀀스 정보

를 동시 활용한다. 이 접근법은 복호 성능 향상과 

지연 시간 감소 사이의 균형점을 찾는 데 중요한 

연구 방향으로 주목받고 있다. 

 

3. 결론 
본 논문은 딥러닝 기반 모델 프리 복호기인 

ECCT 와 Cross MPT, Diff-MPT, AECCT 등의 최신 동

향을 소개하였다. 

본론에서 살펴본 바와 같이, 다중 모달리티 아키

텍처, 하이브리드 아키텍처, 효율적 Attention 메커니

즘 등 다양한 개선 기법들이 활발히 연구되고 있다. 

결론적으로, 현재의 모델 프리 복호기는 직접 적

용하기에는 한계가 명확하다. 향후 연구는 ECCT 의 

우수한 복호 성능을 유지하면서도, 앞서 언급된 경

량화, 양자화, 모달리티 융합 등의 기법들을 접목하

여 연산 복잡도를 획기적으로 줄이는 방향에 중점

을 두어야 할 것이다. 
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