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Abstract—Smart grid security faces the dual challenge of
maintaining robust intrusion detection while minimizing energy
consumption. This paper presents the Adaptive Energy-Aware In-
trusion Detection System (PAE-IDS), to achieve optimal balance
between security effectiveness and energy efficiency. Our system
implements risk-based segmentation, dynamic monitoring adjust-
ment, and feedback-driven optimization. Experimental results on
a 60,000-sample smart grid stability dataset demonstrate 40-60%
energy reduction while maintaining 99.6% detection accuracy for
high-risk segments. The proposed framework offers a scalable
solution for resource-constrained smart grid environments. Addi-
tionally, it uses PureChain with low latency and high throughput.

Index Terms—Energy efficiency, Intrusion detection,
PureChain, Smart grid security.

I. INTRODUCTION

Smart grids face a core challenge: ensuring continuous cy-
bersecurity while minimizing the energy overhead of intrusion
detection systems (IDS), which can consume up to 15% of
grid management resources. As IDS have become integral
to smart grid defense [1], their high computational demand
creates a trade-off between security coverage and energy
efficiency [2]. Existing IDS designs either favor lightweight
models with reduced accuracy or complex models with heavy
energy consumption, failing to adapt to the heterogeneous and
dynamic threat landscape of smart grid networks.

The energy consumption of continuous high-intensity mon-
itoring can account for up to 15% of total grid management
overhead, making it economically and environmentally unsus-
tainable [3]. This paper introduces the PureChain Adaptive
Energy-Aware Intrusion Detection System (PAE-IDS). This
adaptive framework applies five principles, such as Segmen-
tation, Resource Utilization, Dynamics, and Periodic Action,
to resolve the security-efficiency contradiction. The principles
considered in this study include a risk-based segmentation
strategy for intelligent resource allocation. This dynamic mon-
itoring system adapts to real-time threat levels, a feedback-
driven mechanism for optimizing detection thresholds and
energy use, and PureChain, a consensus protocol [4] offering
low latency and high throughput.

II. SUMMARY OF SYSTEM ARCHITECTURE

PAE-IDS implements a hierarchical architecture incorporat-
ing five principles to achieve optimal balance between security
effectiveness and energy efficiency as shown in Figure 1.

Fig. 1. Architecture of Improved BiLSTM

1) Segmentation: The system divides network traffic into
risk-based segments using a composite risk score calculated
from grid stability parameters and power variations as in
Equation 1.

RS = |σ(stab)|+ σ(P1 . . . P4) + σ(G1 . . . G4), (1)

where RS represents risk score, σ denotes standard deviation,
P represents power consumption nodes, and G represents
generation nodes.

2) Resource Utilization: This is tailored based on the risk
segment identified during segmentation. For the high-risk
segment, a Multi-Layer Perceptron (MLP) model is utilized,
configured with a range of 100 to 50 neurons to capture
complex patterns. In the case of medium-risk, a Random
Forest (RF) model with 50 estimators is employed to balance
predictive accuracy and computational efficiency. Finally, for
the low-risk segment, a Decision Tree (DT) model is used,
with a maximum depth of 5, ensuring simplicity and inter-
pretability while maintaining adequate performance for low-
risk conditions.

3) Dynamics: The monitoring intensity adapts based on
anomaly detection rates. When the anomaly ratio exceeds
the threshold θ, the system switches from lightweight to



comprehensive monitoring as in Equation 2.

M(t) =

{
Mhigh if A(t) > θ

Mlow otherwise
(2)

4) Periodic Action: Instead of continuous monitoring, the
system processes data in configurable intervals (default: 100
samples), reducing unnecessary computational overhead.

5) Feedback: Historical performance data optimizes future
threshold adjustments as in Equation 3.

θ(t+ 1) = θ(t)× α, (3)

where α= 1.2 if mean anomaly ¡ 0.05, and α= 0.8 if mean
anomaly ¿ 0.15.

6) Energy Consumption Modeling: Energy consumption is
estimated using a complexity-weighted time metric, expressed
as in Equation 4.

E = T × C(M), (4)

where T denotes the training or inference time, and C(M)
represents the model complexity, assigned as C(MLP) = 10.0,
C(RF) = 5.0, and C(DT) = 1.0.

The PAE-IDSContract employs the
PureChainlogIntrusion function to record intrusion
events with associated risk levels and anomaly counts,
while updateModel enables validators to revise anomaly
detection performance metrics. Experiments, conducted using
PyTorch 1.10 on an NVIDIA Tesla V100 GPU (16GB
VRAM) and Intel Xeon CPU with 32GB RAM, utilized the
Smart Grid Stability Dataset ( [5]), which comprises 60,000
samples with 12 features for binary stability classification.
Risk segmentation categorized data into high (30%), medium
(40%), and low (30%) risk levels.

III. PERFORMANCE EVALUATION

Table I confirms that the PAE-IDS design mitigates the se-
curity–efficiency trade-off in smart grid IDS, achieving 99.6%
detection accuracy for high-risk segments while reducing
energy consumption by 40–60%. Table II presents the training

TABLE I
RISK SEGMENT PERFORMANCE

Risk Level Model Type Accuracy Energy Training Time(s)
High MLP 0.996 41.50 4.15
Medium RF 0.947 13.32 2.66
Low DT 0.821 0.12 0.12

settings of 500 epochs for the high-risk MLP, 50 trees for
the medium-risk RF, and a single-pass depth-5 DT for low-
risk cases. The recommended ranges are 300–500 epochs for
MLP, RF 30–50 trees, and DT depth 3–5, which define optimal
efficiency points where additional training yields marginal
accuracy gains.

Figure 2 compares model performance in terms of through-
put, latency, and transactions. Throughput scales with transac-
tion volume, peaking at 500, while latency initially increases
and then stabilizes. Rapid throughput stabilization enhances

TABLE II
RECOMMENDED MODEL EPOCHS AND PARAMETERS BASED ON RISK

LEVEL

Risk Level Current Epochs Recommended Range
High Risk 500 300-500
Medium Risk 50 trees 30-50 trees
Low Risk 1 pass (depth=5) 1 pass (depth=3-5)

energy efficiency, as high throughput and low latency mini-
mize communication overhead, whereas prolonged latency el-
evates energy consumption through additional training rounds.

Fig. 2. Throughput of PureChain

IV. CONCLUSION AND FUTURE WORK

The paper introduces PAE-IDS, an adaptive energy-aware
intrusion detection framework for smart grids that integrates
risk-based segmentation, dynamic monitoring, and feedback
optimization. It achieves 40–60% energy savings while pre-
serving high detection accuracy in critical areas, offering a
scalable and efficient security solution for resource-constrained
environments.
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